Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
from gensim.models import Word2Vec
|
4 |
+
from gensim.utils import simple_preprocess
|
5 |
+
import numpy as np
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
import pickle
|
9 |
+
|
10 |
+
# Open the file in binary read mode
|
11 |
+
with open("Emailclassifier_model.pkl", "rb") as file:
|
12 |
+
classifier_model = pickle.load(file)
|
13 |
+
|
14 |
+
wordvect_model = Word2Vec.load("word2vec_model.model")
|
15 |
+
|
16 |
+
def preprocess_sentence(sentence):
|
17 |
+
return simple_preprocess(sentence)
|
18 |
+
|
19 |
+
def vectorize_sentence(tokens, wordvect_model):
|
20 |
+
tokens = [token for token in tokens if token in wordvect_model.wv]
|
21 |
+
print('Tokens are ----------------',tokens)
|
22 |
+
if not tokens:
|
23 |
+
return np.zeros(wordvect_model.vector_size)
|
24 |
+
print('avaergae', np.mean([wordvect_model.wv[token] for token in tokens], axis=0))
|
25 |
+
return np.mean([wordvect_model.wv[token] for token in tokens], axis=0)
|
26 |
+
|
27 |
+
def predict_sentence(sentence, wordvect_model, classifier):
|
28 |
+
tokens = preprocess_sentence(sentence)
|
29 |
+
vector = vectorize_sentence(tokens, wordvect_model)
|
30 |
+
prediction = classifier.predict([vector])
|
31 |
+
return "spam" if prediction == 1 else "ham"
|
32 |
+
|
33 |
+
st.title("Email Spam Classifier")
|
34 |
+
st.write("Enter the email content below:")
|
35 |
+
|
36 |
+
user_input = st.text_area("Email Content")
|
37 |
+
|
38 |
+
if st.button("Classify"):
|
39 |
+
result = predict_sentence(user_input, wordvect_model, classifier_model)
|
40 |
+
st.write(f"The email is classified as: {result}")
|
41 |
+
|