import streamlit as st import joblib from gensim.models import Word2Vec from gensim.utils import simple_preprocess import numpy as np import pickle import pickle # Open the file in binary read mode with open("Emailclassifier_model.pkl", "rb") as file: classifier_model = pickle.load(file) wordvect_model = Word2Vec.load("word2vec_model.model") def preprocess_sentence(sentence): return simple_preprocess(sentence) def vectorize_sentence(tokens, wordvect_model): tokens = [token for token in tokens if token in wordvect_model.wv] print('Tokens are ----------------',tokens) if not tokens: return np.zeros(wordvect_model.vector_size) print('avaergae', np.mean([wordvect_model.wv[token] for token in tokens], axis=0)) return np.mean([wordvect_model.wv[token] for token in tokens], axis=0) def predict_sentence(sentence, wordvect_model, classifier): tokens = preprocess_sentence(sentence) vector = vectorize_sentence(tokens, wordvect_model) prediction = classifier.predict([vector]) return "spam" if prediction == 1 else "ham" st.title("Email Spam Classifier") st.write("Enter the email content below:") user_input = st.text_area("Email Content") if st.button("Classify"): result = predict_sentence(user_input, wordvect_model, classifier_model) if result == "spam": st.markdown(f"
The email is classified as: {result}
", unsafe_allow_html=True) else: st.markdown(f"The email is classified as: {result}
", unsafe_allow_html=True)