Spaces:
Sleeping
Sleeping
import streamlit as st | |
import joblib | |
from gensim.models import Word2Vec | |
from gensim.utils import simple_preprocess | |
import numpy as np | |
import pickle | |
# Open the file in binary read mode | |
with open("Emailclassifier_model.pkl", "rb") as file: | |
classifier_model = pickle.load(file) | |
wordvect_model = Word2Vec.load("word2vec_model.model") | |
def preprocess_sentence(sentence): | |
return simple_preprocess(sentence) | |
def vectorize_sentence(tokens, wordvect_model): | |
tokens = [token for token in tokens if token in wordvect_model.wv] | |
print('Tokens are ----------------',tokens) | |
if not tokens: | |
return np.zeros(wordvect_model.vector_size) | |
print('avaergae', np.mean([wordvect_model.wv[token] for token in tokens], axis=0)) | |
return np.mean([wordvect_model.wv[token] for token in tokens], axis=0) | |
def predict_sentence(sentence, wordvect_model, classifier): | |
tokens = preprocess_sentence(sentence) | |
vector = vectorize_sentence(tokens, wordvect_model) | |
prediction = classifier.predict([vector]) | |
return "spam" if prediction == 1 else "ham" | |
st.title("Email Spam Classifier") | |
st.write("Enter the email content below:") | |
user_input = st.text_area("Email Content") | |
if st.button("Classify"): | |
result = predict_sentence(user_input, wordvect_model, classifier_model) | |
if result == "spam": | |
st.markdown(f"<p style='color:red; font-size:20px; font-weight:bold;'>The email is classified as: {result}</p>", unsafe_allow_html=True) | |
else: | |
st.markdown(f"<p style='color:green; font-size:20px; font-weight:bold;'>The email is classified as: {result}</p>", unsafe_allow_html=True) | |