File size: 5,487 Bytes
c5ab28f
 
 
 
 
580b393
c5ab28f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5347a9
 
 
c5ab28f
 
 
 
 
 
 
c5347a9
 
c5ab28f
779c505
c5ab28f
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Import modules  
from typing import TypedDict, Dict  
from langgraph.graph import StateGraph, END  
from langchain_core.prompts import ChatPromptTemplate  
from langchain_core.runnables.graph import MermaidDrawMethod  
# from IPython.display import Image, display  
import gradio as gr  
import os  
from langchain_groq import ChatGroq  
  
# Define the State data structure  
class State(TypedDict):  
    query: str  
    category: str  
    sentiment: str  
    response: str  
  
# Function to get the language model  
def get_llm(api_key=None):  
    if api_key is None:  
        api_key = os.getenv('GROQ_API_KEY')  
    llm = ChatGroq(  
        temperature=0,  
        groq_api_key=api_key,  
        model_name="llama-3.3-70b-versatile"  
    )  
    return llm  
  
# Define the processing functions  
def categorize(state: State, llm) -> State:  
    prompt = ChatPromptTemplate.from_template(  
        "Categorize the following customer query into one of these categories: "  
        "Technical, Billing, General. Query: {query}"  
    )  
    chain = prompt | llm  
    category = chain.invoke({"query": state["query"]}).content.strip()  
    state["category"] = category  
    return state  
  
def analyze_sentiment(state: State, llm) -> State:  
    prompt = ChatPromptTemplate.from_template(  
        "Analyze the sentiment of the following customer query. "  
        "Respond with either 'Positive', 'Neutral', or 'Negative'. Query: {query}"  
    )  
    chain = prompt | llm  
    sentiment = chain.invoke({"query": state["query"]}).content.strip()  
    state["sentiment"] = sentiment  
    return state  
  
def handle_technical(state: State, llm) -> State:  
    prompt = ChatPromptTemplate.from_template(  
        "Provide a technical support response to the following query: {query}"  
    )  
    chain = prompt | llm  
    response = chain.invoke({"query": state["query"]}).content.strip()  
    state["response"] = response  
    return state  
  
def handle_billing(state: State, llm) -> State:  
    prompt = ChatPromptTemplate.from_template(  
        "Provide a billing-related support response to the following query: {query}"  
    )  
    chain = prompt | llm  
    response = chain.invoke({"query": state["query"]}).content.strip()  
    state["response"] = response  
    return state  
  
def handle_general(state: State, llm) -> State:  
    prompt = ChatPromptTemplate.from_template(  
        "Provide a general support response to the following query: {query}"  
    )  
    chain = prompt | llm  
    response = chain.invoke({"query": state["query"]}).content.strip()  
    state["response"] = response  
    return state  
  
def escalate(state: State) -> State:  
    state["response"] = "This query has been escalated to a human agent due to its negative sentiment."  
    return state  
  
def route_query(state: State) -> str:  
    if state["sentiment"].lower() == "negative":  
        return "escalate"  
    elif state["category"].lower() == "technical":  
        return "handle_technical"  
    elif state["category"].lower() == "billing":  
        return "handle_billing"  
    else:  
        return "handle_general"  
  
# Function to compile the workflow  
def get_workflow(llm):  
    workflow = StateGraph(State)  
    workflow.add_node("categorize", lambda state: categorize(state, llm))  
    workflow.add_node("analyze_sentiment", lambda state: analyze_sentiment(state, llm))  
    workflow.add_node("handle_technical", lambda state: handle_technical(state, llm))  
    workflow.add_node("handle_billing", lambda state: handle_billing(state, llm))  
    workflow.add_node("handle_general", lambda state: handle_general(state, llm))  
    workflow.add_node("escalate", escalate)  
  
    workflow.add_edge("categorize", "analyze_sentiment")  
    workflow.add_conditional_edges("analyze_sentiment",  
                                   route_query, {  
                                       "handle_technical": "handle_technical",  
                                       "handle_billing": "handle_billing",  
                                       "handle_general": "handle_general",  
                                       "escalate": "escalate",  
                                   })  
    workflow.add_edge("handle_technical", END)  
    workflow.add_edge("handle_billing", END)  
    workflow.add_edge("handle_general", END)  
    workflow.add_edge("escalate", END)  
  
    workflow.set_entry_point("categorize")  
    return workflow.compile()  
  
# Gradio interface function  
def run_customer_support(query: str, api_key: str) -> Dict[str, str]:  
    llm = get_llm(api_key)  
    app = get_workflow(llm)  
    result = app.invoke({"query": query})  
    return {  
        # "Query": query,  
        # "Category": result.get("category", "").strip(),  
        # "Sentiment": result.get("sentiment", "").strip(),  
        "Response": result.get("response", "").strip()  
    }  
  
# Create the Gradio interface  
gr_interface = gr.Interface(  
    fn=run_customer_support,  
    inputs=[  
        gr.Textbox(lines=2, label="Customer Query", placeholder="Enter your customer support query here..."),  
        gr.Textbox(label="GROQ API Key", placeholder="Enter your GROQ API key"),  
    ],  
    outputs=gr.JSON(label="Response"),  
    title="Customer Support Chatbot",  
    description="Enter your query to receive assistance.",  
)  
  
# Launch the Gradio interface  
gr_interface.launch()