Spaces:
Runtime error
Runtime error
saritha Miryala
commited on
Add files via upload
Browse files- README.md +7 -1
- app.py +178 -0
- requirements.txt +8 -0
README.md
CHANGED
@@ -1 +1,7 @@
|
|
1 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# diabetes_prediction
|
2 |
+
Preview of the Project
|
3 |
+
|
4 |
+

|
5 |
+

|
6 |
+

|
7 |
+

|
app.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pip install streamlit
|
2 |
+
#pip install pandas
|
3 |
+
#pip install sklearn
|
4 |
+
|
5 |
+
|
6 |
+
# IMPORT STATEMENTS
|
7 |
+
import streamlit as st
|
8 |
+
import pandas as pd
|
9 |
+
from PIL import Image
|
10 |
+
import numpy as np
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import plotly.figure_factory as ff
|
13 |
+
from sklearn.metrics import accuracy_score
|
14 |
+
from sklearn.ensemble import RandomForestClassifier
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
import seaborn as sns
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
df = pd.read_csv('diabetes.csv')
|
21 |
+
|
22 |
+
# HEADINGS
|
23 |
+
st.title('Diabetes Checkup')
|
24 |
+
st.sidebar.header('Patient Data')
|
25 |
+
st.subheader('Training Data Stats')
|
26 |
+
st.write(df.describe())
|
27 |
+
|
28 |
+
|
29 |
+
# X AND Y DATA
|
30 |
+
x = df.drop(['Outcome'], axis = 1)
|
31 |
+
y = df.iloc[:, -1]
|
32 |
+
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.2, random_state = 0)
|
33 |
+
|
34 |
+
|
35 |
+
# FUNCTION
|
36 |
+
def user_report():
|
37 |
+
pregnancies = st.sidebar.slider('Pregnancies', 0,17, 3 )
|
38 |
+
glucose = st.sidebar.slider('Glucose', 0,200, 120 )
|
39 |
+
bp = st.sidebar.slider('Blood Pressure', 0,122, 70 )
|
40 |
+
skinthickness = st.sidebar.slider('Skin Thickness', 0,100, 20 )
|
41 |
+
insulin = st.sidebar.slider('Insulin', 0,846, 79 )
|
42 |
+
bmi = st.sidebar.slider('BMI', 0,67, 20 )
|
43 |
+
dpf = st.sidebar.slider('Diabetes Pedigree Function', 0.0,2.4, 0.47 )
|
44 |
+
age = st.sidebar.slider('Age', 21,88, 33 )
|
45 |
+
|
46 |
+
user_report_data = {
|
47 |
+
'pregnancies':pregnancies,
|
48 |
+
'glucose':glucose,
|
49 |
+
'bp':bp,
|
50 |
+
'skinthickness':skinthickness,
|
51 |
+
'insulin':insulin,
|
52 |
+
'bmi':bmi,
|
53 |
+
'dpf':dpf,
|
54 |
+
'age':age
|
55 |
+
}
|
56 |
+
report_data = pd.DataFrame(user_report_data, index=[0])
|
57 |
+
return report_data
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
# PATIENT DATA
|
63 |
+
user_data = user_report()
|
64 |
+
st.subheader('Patient Data')
|
65 |
+
st.write(user_data)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
# MODEL
|
71 |
+
rf = RandomForestClassifier()
|
72 |
+
rf.fit(x_train, y_train)
|
73 |
+
user_result = rf.predict(user_data)
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
# VISUALISATIONS
|
78 |
+
st.title('Visualised Patient Report')
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
# COLOR FUNCTION
|
83 |
+
if user_result[0]==0:
|
84 |
+
color = 'blue'
|
85 |
+
else:
|
86 |
+
color = 'red'
|
87 |
+
|
88 |
+
|
89 |
+
# Age vs Pregnancies
|
90 |
+
st.header('Pregnancy count Graph (Others vs Yours)')
|
91 |
+
fig_preg = plt.figure()
|
92 |
+
ax1 = sns.scatterplot(x = 'Age', y = 'Pregnancies', data = df, hue = 'Outcome', palette = 'Greens')
|
93 |
+
ax2 = sns.scatterplot(x = user_data['age'], y = user_data['pregnancies'], s = 150, color = color)
|
94 |
+
plt.xticks(np.arange(10,100,5))
|
95 |
+
plt.yticks(np.arange(0,20,2))
|
96 |
+
plt.title('0 - Healthy & 1 - Unhealthy')
|
97 |
+
st.pyplot(fig_preg)
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
# Age vs Glucose
|
102 |
+
st.header('Glucose Value Graph (Others vs Yours)')
|
103 |
+
fig_glucose = plt.figure()
|
104 |
+
ax3 = sns.scatterplot(x = 'Age', y = 'Glucose', data = df, hue = 'Outcome' , palette='magma')
|
105 |
+
ax4 = sns.scatterplot(x = user_data['age'], y = user_data['glucose'], s = 150, color = color)
|
106 |
+
plt.xticks(np.arange(10,100,5))
|
107 |
+
plt.yticks(np.arange(0,220,10))
|
108 |
+
plt.title('0 - Healthy & 1 - Unhealthy')
|
109 |
+
st.pyplot(fig_glucose)
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
# Age vs Bp
|
114 |
+
st.header('Blood Pressure Value Graph (Others vs Yours)')
|
115 |
+
fig_bp = plt.figure()
|
116 |
+
ax5 = sns.scatterplot(x = 'Age', y = 'BloodPressure', data = df, hue = 'Outcome', palette='Reds')
|
117 |
+
ax6 = sns.scatterplot(x = user_data['age'], y = user_data['bp'], s = 150, color = color)
|
118 |
+
plt.xticks(np.arange(10,100,5))
|
119 |
+
plt.yticks(np.arange(0,130,10))
|
120 |
+
plt.title('0 - Healthy & 1 - Unhealthy')
|
121 |
+
st.pyplot(fig_bp)
|
122 |
+
|
123 |
+
|
124 |
+
# Age vs St
|
125 |
+
st.header('Skin Thickness Value Graph (Others vs Yours)')
|
126 |
+
fig_st = plt.figure()
|
127 |
+
ax7 = sns.scatterplot(x = 'Age', y = 'SkinThickness', data = df, hue = 'Outcome', palette='Blues')
|
128 |
+
ax8 = sns.scatterplot(x = user_data['age'], y = user_data['skinthickness'], s = 150, color = color)
|
129 |
+
plt.xticks(np.arange(10,100,5))
|
130 |
+
plt.yticks(np.arange(0,110,10))
|
131 |
+
plt.title('0 - Healthy & 1 - Unhealthy')
|
132 |
+
st.pyplot(fig_st)
|
133 |
+
|
134 |
+
|
135 |
+
# Age vs Insulin
|
136 |
+
st.header('Insulin Value Graph (Others vs Yours)')
|
137 |
+
fig_i = plt.figure()
|
138 |
+
ax9 = sns.scatterplot(x = 'Age', y = 'Insulin', data = df, hue = 'Outcome', palette='rocket')
|
139 |
+
ax10 = sns.scatterplot(x = user_data['age'], y = user_data['insulin'], s = 150, color = color)
|
140 |
+
plt.xticks(np.arange(10,100,5))
|
141 |
+
plt.yticks(np.arange(0,900,50))
|
142 |
+
plt.title('0 - Healthy & 1 - Unhealthy')
|
143 |
+
st.pyplot(fig_i)
|
144 |
+
|
145 |
+
|
146 |
+
# Age vs BMI
|
147 |
+
st.header('BMI Value Graph (Others vs Yours)')
|
148 |
+
fig_bmi = plt.figure()
|
149 |
+
ax11 = sns.scatterplot(x = 'Age', y = 'BMI', data = df, hue = 'Outcome', palette='rainbow')
|
150 |
+
ax12 = sns.scatterplot(x = user_data['age'], y = user_data['bmi'], s = 150, color = color)
|
151 |
+
plt.xticks(np.arange(10,100,5))
|
152 |
+
plt.yticks(np.arange(0,70,5))
|
153 |
+
plt.title('0 - Healthy & 1 - Unhealthy')
|
154 |
+
st.pyplot(fig_bmi)
|
155 |
+
|
156 |
+
|
157 |
+
# Age vs Dpf
|
158 |
+
st.header('DPF Value Graph (Others vs Yours)')
|
159 |
+
fig_dpf = plt.figure()
|
160 |
+
ax13 = sns.scatterplot(x = 'Age', y = 'DiabetesPedigreeFunction', data = df, hue = 'Outcome', palette='YlOrBr')
|
161 |
+
ax14 = sns.scatterplot(x = user_data['age'], y = user_data['dpf'], s = 150, color = color)
|
162 |
+
plt.xticks(np.arange(10,100,5))
|
163 |
+
plt.yticks(np.arange(0,3,0.2))
|
164 |
+
plt.title('0 - Healthy & 1 - Unhealthy')
|
165 |
+
st.pyplot(fig_dpf)
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
# OUTPUT
|
170 |
+
st.subheader('Your Report: ')
|
171 |
+
output=''
|
172 |
+
if user_result[0]==0:
|
173 |
+
output = 'You are not Diabetic'
|
174 |
+
else:
|
175 |
+
output = 'You are Diabetic'
|
176 |
+
st.title(output)
|
177 |
+
st.subheader('Accuracy: ')
|
178 |
+
st.write(str(accuracy_score(y_test, rf.predict(x_test))*100)+'%')
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas==1.1.4
|
2 |
+
matplotlib==3.3.3
|
3 |
+
seaborn==0.11.1
|
4 |
+
numpy==1.18.5
|
5 |
+
streamlit==0.72.0
|
6 |
+
plotly==4.14.1
|
7 |
+
Pillow==8.0.1
|
8 |
+
scikit_learn==0.24.0
|