Spaces:
Running
Running
File size: 7,754 Bytes
9665c2c b0cf684 9665c2c b0cf684 9665c2c b0cf684 9665c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import numpy as np
import torch
from torch.nn.functional import normalize
from . import get_model
from .base import BaseModel
from .bev_net import BEVNet
from .bev_projection import CartesianProjection, PolarProjectionDepth
from .map_encoder import MapEncoder
from .metrics import AngleError, AngleRecall, Location2DError, Location2DRecall
from .voting import (
TemplateSampler,
argmax_xyr,
conv2d_fft_batchwise,
expectation_xyr,
log_softmax_spatial,
mask_yaw_prior,
nll_loss_xyr,
nll_loss_xyr_smoothed,
)
class OrienterNet(BaseModel):
default_conf = {
"image_encoder": "???",
"map_encoder": "???",
"bev_net": "???",
"latent_dim": "???",
"matching_dim": "???",
"scale_range": [0, 9],
"num_scale_bins": "???",
"z_min": None,
"z_max": "???",
"x_max": "???",
"pixel_per_meter": "???",
"num_rotations": "???",
"add_temperature": False,
"normalize_features": False,
"padding_matching": "replicate",
"apply_map_prior": True,
"do_label_smoothing": False,
"sigma_xy": 1,
"sigma_r": 2,
# depcreated
"depth_parameterization": "scale",
"norm_depth_scores": False,
"normalize_scores_by_dim": False,
"normalize_scores_by_num_valid": True,
"prior_renorm": True,
"retrieval_dim": None,
}
def _init(self, conf):
assert not self.conf.norm_depth_scores
assert self.conf.depth_parameterization == "scale"
assert not self.conf.normalize_scores_by_dim
assert self.conf.normalize_scores_by_num_valid
assert self.conf.prior_renorm
Encoder = get_model(conf.image_encoder.get("name", "feature_extractor_v2"))
self.image_encoder = Encoder(conf.image_encoder.backbone)
self.map_encoder = MapEncoder(conf.map_encoder)
self.bev_net = None if conf.bev_net is None else BEVNet(conf.bev_net)
ppm = conf.pixel_per_meter
self.projection_polar = PolarProjectionDepth(
conf.z_max,
ppm,
conf.scale_range,
conf.z_min,
)
self.projection_bev = CartesianProjection(
conf.z_max, conf.x_max, ppm, conf.z_min
)
self.template_sampler = TemplateSampler(
self.projection_bev.grid_xz, ppm, conf.num_rotations
)
self.scale_classifier = torch.nn.Linear(conf.latent_dim, conf.num_scale_bins)
if conf.bev_net is None:
self.feature_projection = torch.nn.Linear(
conf.latent_dim, conf.matching_dim
)
if conf.add_temperature:
temperature = torch.nn.Parameter(torch.tensor(0.0))
self.register_parameter("temperature", temperature)
def exhaustive_voting(self, f_bev, f_map, valid_bev, confidence_bev=None):
if self.conf.normalize_features:
f_bev = normalize(f_bev, dim=1)
f_map = normalize(f_map, dim=1)
# Build the templates and exhaustively match against the map.
if confidence_bev is not None:
f_bev = f_bev * confidence_bev.unsqueeze(1)
f_bev = f_bev.masked_fill(~valid_bev.unsqueeze(1), 0.0)
templates = self.template_sampler(f_bev)
with torch.autocast("cuda", enabled=False):
scores = conv2d_fft_batchwise(
f_map.float(),
templates.float(),
padding_mode=self.conf.padding_matching,
)
if self.conf.add_temperature:
scores = scores * torch.exp(self.temperature)
# Reweight the different rotations based on the number of valid pixels in each
# template. Axis-aligned rotation have the maximum number of valid pixels.
valid_templates = self.template_sampler(valid_bev.float()[None]) > (1 - 1e-4)
num_valid = valid_templates.float().sum((-3, -2, -1))
scores = scores / num_valid[..., None, None]
return scores
def _forward(self, data):
pred = {}
pred_map = pred["map"] = self.map_encoder(data)
f_map = pred_map["map_features"][0]
# Extract image features.
level = 0
f_image = self.image_encoder(data)["feature_maps"][level]
camera = data["camera"].scale(1 / self.image_encoder.scales[level])
camera = camera.to(data["image"].device, non_blocking=True)
# Estimate the monocular priors.
pred["pixel_scales"] = scales = self.scale_classifier(f_image.moveaxis(1, -1))
f_polar = self.projection_polar(f_image, scales, camera)
# Map to the BEV.
with torch.autocast("cuda", enabled=False):
f_bev, valid_bev, _ = self.projection_bev(
f_polar.float(), None, camera.float()
)
pred_bev = {}
if self.conf.bev_net is None:
# channel last -> classifier -> channel first
f_bev = self.feature_projection(f_bev.moveaxis(1, -1)).moveaxis(-1, 1)
else:
pred_bev = pred["bev"] = self.bev_net({"input": f_bev})
f_bev = pred_bev["output"]
scores = self.exhaustive_voting(
f_bev, f_map, valid_bev, pred_bev.get("confidence")
)
scores = scores.moveaxis(1, -1) # B,H,W,N
if "log_prior" in pred_map and self.conf.apply_map_prior:
scores = scores + pred_map["log_prior"][0].unsqueeze(-1)
# pred["scores_unmasked"] = scores.clone()
if "map_mask" in data:
scores.masked_fill_(~data["map_mask"][..., None], -np.inf)
if "yaw_prior" in data:
mask_yaw_prior(scores, data["yaw_prior"], self.conf.num_rotations)
log_probs = log_softmax_spatial(scores)
with torch.no_grad():
uvr_max = argmax_xyr(scores).to(scores)
uvr_avg, _ = expectation_xyr(log_probs.exp())
return {
**pred,
"scores": scores,
"log_probs": log_probs,
"uvr_max": uvr_max,
"uv_max": uvr_max[..., :2],
"yaw_max": uvr_max[..., 2],
"uvr_expectation": uvr_avg,
"uv_expectation": uvr_avg[..., :2],
"yaw_expectation": uvr_avg[..., 2],
"features_image": f_image,
"features_bev": f_bev,
"valid_bev": valid_bev.squeeze(1),
}
def loss(self, pred, data):
xy_gt = data["uv"]
yaw_gt = data["roll_pitch_yaw"][..., -1]
if self.conf.do_label_smoothing:
nll = nll_loss_xyr_smoothed(
pred["log_probs"],
xy_gt,
yaw_gt,
self.conf.sigma_xy / self.conf.pixel_per_meter,
self.conf.sigma_r,
mask=data.get("map_mask"),
)
else:
nll = nll_loss_xyr(pred["log_probs"], xy_gt, yaw_gt)
loss = {"total": nll, "nll": nll}
if self.training and self.conf.add_temperature:
loss["temperature"] = self.temperature.expand(len(nll))
return loss
def metrics(self):
return {
"xy_max_error": Location2DError("uv_max", self.conf.pixel_per_meter),
"xy_expectation_error": Location2DError(
"uv_expectation", self.conf.pixel_per_meter
),
"yaw_max_error": AngleError("yaw_max"),
"xy_recall_2m": Location2DRecall(2.0, self.conf.pixel_per_meter, "uv_max"),
"xy_recall_5m": Location2DRecall(5.0, self.conf.pixel_per_meter, "uv_max"),
"yaw_recall_2°": AngleRecall(2.0, "yaw_max"),
"yaw_recall_5°": AngleRecall(5.0, "yaw_max"),
}
|