File size: 7,754 Bytes
9665c2c
 
 
 
 
 
 
 
 
 
b0cf684
 
9665c2c
b0cf684
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0cf684
 
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) Meta Platforms, Inc. and affiliates.

import numpy as np
import torch
from torch.nn.functional import normalize

from . import get_model
from .base import BaseModel
from .bev_net import BEVNet
from .bev_projection import CartesianProjection, PolarProjectionDepth
from .map_encoder import MapEncoder
from .metrics import AngleError, AngleRecall, Location2DError, Location2DRecall
from .voting import (
    TemplateSampler,
    argmax_xyr,
    conv2d_fft_batchwise,
    expectation_xyr,
    log_softmax_spatial,
    mask_yaw_prior,
    nll_loss_xyr,
    nll_loss_xyr_smoothed,
)


class OrienterNet(BaseModel):
    default_conf = {
        "image_encoder": "???",
        "map_encoder": "???",
        "bev_net": "???",
        "latent_dim": "???",
        "matching_dim": "???",
        "scale_range": [0, 9],
        "num_scale_bins": "???",
        "z_min": None,
        "z_max": "???",
        "x_max": "???",
        "pixel_per_meter": "???",
        "num_rotations": "???",
        "add_temperature": False,
        "normalize_features": False,
        "padding_matching": "replicate",
        "apply_map_prior": True,
        "do_label_smoothing": False,
        "sigma_xy": 1,
        "sigma_r": 2,
        # depcreated
        "depth_parameterization": "scale",
        "norm_depth_scores": False,
        "normalize_scores_by_dim": False,
        "normalize_scores_by_num_valid": True,
        "prior_renorm": True,
        "retrieval_dim": None,
    }

    def _init(self, conf):
        assert not self.conf.norm_depth_scores
        assert self.conf.depth_parameterization == "scale"
        assert not self.conf.normalize_scores_by_dim
        assert self.conf.normalize_scores_by_num_valid
        assert self.conf.prior_renorm

        Encoder = get_model(conf.image_encoder.get("name", "feature_extractor_v2"))
        self.image_encoder = Encoder(conf.image_encoder.backbone)
        self.map_encoder = MapEncoder(conf.map_encoder)
        self.bev_net = None if conf.bev_net is None else BEVNet(conf.bev_net)

        ppm = conf.pixel_per_meter
        self.projection_polar = PolarProjectionDepth(
            conf.z_max,
            ppm,
            conf.scale_range,
            conf.z_min,
        )
        self.projection_bev = CartesianProjection(
            conf.z_max, conf.x_max, ppm, conf.z_min
        )
        self.template_sampler = TemplateSampler(
            self.projection_bev.grid_xz, ppm, conf.num_rotations
        )

        self.scale_classifier = torch.nn.Linear(conf.latent_dim, conf.num_scale_bins)
        if conf.bev_net is None:
            self.feature_projection = torch.nn.Linear(
                conf.latent_dim, conf.matching_dim
            )
        if conf.add_temperature:
            temperature = torch.nn.Parameter(torch.tensor(0.0))
            self.register_parameter("temperature", temperature)

    def exhaustive_voting(self, f_bev, f_map, valid_bev, confidence_bev=None):
        if self.conf.normalize_features:
            f_bev = normalize(f_bev, dim=1)
            f_map = normalize(f_map, dim=1)

        # Build the templates and exhaustively match against the map.
        if confidence_bev is not None:
            f_bev = f_bev * confidence_bev.unsqueeze(1)
        f_bev = f_bev.masked_fill(~valid_bev.unsqueeze(1), 0.0)
        templates = self.template_sampler(f_bev)
        with torch.autocast("cuda", enabled=False):
            scores = conv2d_fft_batchwise(
                f_map.float(),
                templates.float(),
                padding_mode=self.conf.padding_matching,
            )
        if self.conf.add_temperature:
            scores = scores * torch.exp(self.temperature)

        # Reweight the different rotations based on the number of valid pixels in each
        # template. Axis-aligned rotation have the maximum number of valid pixels.
        valid_templates = self.template_sampler(valid_bev.float()[None]) > (1 - 1e-4)
        num_valid = valid_templates.float().sum((-3, -2, -1))
        scores = scores / num_valid[..., None, None]
        return scores

    def _forward(self, data):
        pred = {}
        pred_map = pred["map"] = self.map_encoder(data)
        f_map = pred_map["map_features"][0]

        # Extract image features.
        level = 0
        f_image = self.image_encoder(data)["feature_maps"][level]
        camera = data["camera"].scale(1 / self.image_encoder.scales[level])
        camera = camera.to(data["image"].device, non_blocking=True)

        # Estimate the monocular priors.
        pred["pixel_scales"] = scales = self.scale_classifier(f_image.moveaxis(1, -1))
        f_polar = self.projection_polar(f_image, scales, camera)

        # Map to the BEV.
        with torch.autocast("cuda", enabled=False):
            f_bev, valid_bev, _ = self.projection_bev(
                f_polar.float(), None, camera.float()
            )
        pred_bev = {}
        if self.conf.bev_net is None:
            # channel last -> classifier -> channel first
            f_bev = self.feature_projection(f_bev.moveaxis(1, -1)).moveaxis(-1, 1)
        else:
            pred_bev = pred["bev"] = self.bev_net({"input": f_bev})
            f_bev = pred_bev["output"]

        scores = self.exhaustive_voting(
            f_bev, f_map, valid_bev, pred_bev.get("confidence")
        )
        scores = scores.moveaxis(1, -1)  # B,H,W,N
        if "log_prior" in pred_map and self.conf.apply_map_prior:
            scores = scores + pred_map["log_prior"][0].unsqueeze(-1)
        # pred["scores_unmasked"] = scores.clone()
        if "map_mask" in data:
            scores.masked_fill_(~data["map_mask"][..., None], -np.inf)
        if "yaw_prior" in data:
            mask_yaw_prior(scores, data["yaw_prior"], self.conf.num_rotations)
        log_probs = log_softmax_spatial(scores)
        with torch.no_grad():
            uvr_max = argmax_xyr(scores).to(scores)
            uvr_avg, _ = expectation_xyr(log_probs.exp())

        return {
            **pred,
            "scores": scores,
            "log_probs": log_probs,
            "uvr_max": uvr_max,
            "uv_max": uvr_max[..., :2],
            "yaw_max": uvr_max[..., 2],
            "uvr_expectation": uvr_avg,
            "uv_expectation": uvr_avg[..., :2],
            "yaw_expectation": uvr_avg[..., 2],
            "features_image": f_image,
            "features_bev": f_bev,
            "valid_bev": valid_bev.squeeze(1),
        }

    def loss(self, pred, data):
        xy_gt = data["uv"]
        yaw_gt = data["roll_pitch_yaw"][..., -1]
        if self.conf.do_label_smoothing:
            nll = nll_loss_xyr_smoothed(
                pred["log_probs"],
                xy_gt,
                yaw_gt,
                self.conf.sigma_xy / self.conf.pixel_per_meter,
                self.conf.sigma_r,
                mask=data.get("map_mask"),
            )
        else:
            nll = nll_loss_xyr(pred["log_probs"], xy_gt, yaw_gt)
        loss = {"total": nll, "nll": nll}
        if self.training and self.conf.add_temperature:
            loss["temperature"] = self.temperature.expand(len(nll))
        return loss

    def metrics(self):
        return {
            "xy_max_error": Location2DError("uv_max", self.conf.pixel_per_meter),
            "xy_expectation_error": Location2DError(
                "uv_expectation", self.conf.pixel_per_meter
            ),
            "yaw_max_error": AngleError("yaw_max"),
            "xy_recall_2m": Location2DRecall(2.0, self.conf.pixel_per_meter, "uv_max"),
            "xy_recall_5m": Location2DRecall(5.0, self.conf.pixel_per_meter, "uv_max"),
            "yaw_recall_2°": AngleRecall(2.0, "yaw_max"),
            "yaw_recall_5°": AngleRecall(5.0, "yaw_max"),
        }