Spaces:
Running
Running
File size: 7,113 Bytes
9665c2c b0cf684 9665c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import numpy as np
import torch
from .utils import deg2rad, make_grid, rotmat2d
from .voting import argmax_xyr, log_softmax_spatial, sample_xyr
def log_gaussian(points, mean, sigma):
return -1 / 2 * torch.sum((points - mean) ** 2, -1) / sigma**2
def log_laplace(points, mean, sigma):
return -torch.sum(torch.abs(points - mean), -1) / sigma
def propagate_belief(
Δ_xy, Δ_yaw, canvas_target, canvas_source, belief, num_rotations=None
):
# We allow a different sampling resolution in the target frame
if num_rotations is None:
num_rotations = belief.shape[-1]
angles = torch.arange(
0, 360, 360 / num_rotations, device=Δ_xy.device, dtype=Δ_xy.dtype
)
uv_grid = make_grid(canvas_target.w, canvas_target.h, device=Δ_xy.device)
xy_grid = canvas_target.to_xy(uv_grid.to(Δ_xy))
Δ_xy_world = torch.einsum("nij,j->ni", rotmat2d(deg2rad(-angles)), Δ_xy)
xy_grid_prev = xy_grid[..., None, :] + Δ_xy_world[..., None, None, :, :]
uv_grid_prev = canvas_source.to_uv(xy_grid_prev).to(Δ_xy)
angles_prev = angles + Δ_yaw
angles_grid_prev = angles_prev.tile((canvas_target.h, canvas_target.w, 1))
prior, valid = sample_xyr(
belief[None, None],
uv_grid_prev.to(belief)[None],
angles_grid_prev.to(belief)[None],
nearest_for_inf=True,
)
return prior, valid
def markov_filtering(observations, canvas, xys, yaws, idxs=None):
assert len(observations) == len(canvas) == len(xys) == len(yaws)
if idxs is None:
idxs = range(len(observations))
belief = None
beliefs = []
for i in idxs:
obs = observations[i]
if belief is None:
belief = obs
else:
Δ_xy = rotmat2d(deg2rad(yaws[i])) @ (xys[i - 1] - xys[i])
Δ_yaw = yaws[i - 1] - yaws[i]
prior, valid = propagate_belief(
Δ_xy, Δ_yaw, canvas[i], canvas[i - 1], belief
)
prior = prior[0, 0].masked_fill_(~valid[0], -np.inf)
belief = prior + obs
belief = log_softmax_spatial(belief)
beliefs.append(belief)
uvt_seq = torch.stack([argmax_xyr(p) for p in beliefs])
return beliefs, uvt_seq
def integrate_observation(
source,
target,
xy_source,
xy_target,
yaw_source,
yaw_target,
canvas_source,
canvas_target,
**kwargs
):
Δ_xy = rotmat2d(deg2rad(yaw_target)) @ (xy_source - xy_target)
Δ_yaw = yaw_source - yaw_target
prior, valid = propagate_belief(
Δ_xy, Δ_yaw, canvas_target, canvas_source, source, **kwargs
)
prior = prior[0, 0].masked_fill_(~valid[0], -np.inf)
target.add_(prior)
target.sub_(target.max()) # normalize to avoid overflow
return prior
class RigidAligner:
def __init__(
self,
canvas_ref=None,
xy_ref=None,
yaw_ref=None,
num_rotations=None,
track_priors=False,
):
self.canvas = canvas_ref
self.xy_ref = xy_ref
self.yaw_ref = yaw_ref
self.rotmat_ref = None
self.num_rotations = num_rotations
self.belief = None
self.priors = [] if track_priors else None
self.yaw_slam2geo = None
self.Rt_slam2geo = None
def update(self, observation, canvas, xy, yaw):
# initialization
if self.canvas is None:
self.canvas = canvas
if self.xy_ref is None:
self.xy_ref = xy
self.yaw_ref = yaw
self.rotmat_ref = rotmat2d(deg2rad(self.yaw_ref))
if self.num_rotations is None:
self.num_rotations = observation.shape[-1]
if self.belief is None:
self.belief = observation.new_zeros(
(self.canvas.h, self.canvas.w, self.num_rotations)
)
prior = integrate_observation(
observation,
self.belief,
xy,
self.xy_ref,
yaw,
self.yaw_ref,
canvas,
self.canvas,
num_rotations=self.num_rotations,
)
if self.priors is not None:
self.priors.append(prior.cpu())
return prior
def update_with_ref(self, observation, canvas, xy, yaw):
if self.belief is not None:
observation = observation.clone()
integrate_observation(
self.belief,
observation,
self.xy_ref,
xy,
self.yaw_ref,
yaw,
self.canvas,
canvas,
num_rotations=observation.shape[-1],
)
self.belief = observation
self.canvas = canvas
self.xy_ref = xy
self.yaw_ref = yaw
def compute(self):
uvt_align_ref = argmax_xyr(self.belief)
self.yaw_ref_align = uvt_align_ref[-1]
self.xy_ref_align = self.canvas.to_xy(uvt_align_ref[:2].double())
self.yaw_slam2geo = self.yaw_ref - self.yaw_ref_align
R_slam2geo = rotmat2d(deg2rad(self.yaw_slam2geo))
t_slam2geo = self.xy_ref_align - R_slam2geo @ self.xy_ref
self.Rt_slam2geo = (R_slam2geo, t_slam2geo)
def transform(self, xy, yaw):
if self.Rt_slam2geo is None or self.yaw_slam2geo is None:
raise ValueError("Missing transformation, call `compute()` first!")
xy_geo = self.Rt_slam2geo[1].to(xy) + xy @ self.Rt_slam2geo[0].T.to(xy)
return xy_geo, (self.yaw_slam2geo.to(yaw) + yaw) % 360
class GPSAligner(RigidAligner):
def __init__(self, distribution=log_laplace, **kwargs):
self.distribution = distribution
super().__init__(**kwargs)
if self.num_rotations is None:
raise ValueError("Rotation number is required.")
angles = torch.arange(0, 360, 360 / self.num_rotations)
self.rotmats = rotmat2d(deg2rad(-angles))
self.xy_grid = None
def update(self, xy_gps, accuracy, canvas, xy, yaw):
# initialization
if self.canvas is None:
self.canvas = canvas
if self.xy_ref is None:
self.xy_ref = xy
self.yaw_ref = yaw
self.rotmat_ref = rotmat2d(deg2rad(self.yaw_ref))
if self.xy_grid is None:
self.xy_grid = self.canvas.to_xy(make_grid(self.canvas.w, self.canvas.h))
if self.belief is None:
self.belief = xy_gps.new_zeros(
(self.canvas.h, self.canvas.w, self.num_rotations)
)
# integration
Δ_xy = self.rotmat_ref @ (xy - self.xy_ref)
Δ_xy_world = torch.einsum("nij,j->ni", self.rotmats.to(xy), Δ_xy)
xy_grid_prev = (
self.xy_grid.to(xy)[..., None, :] + Δ_xy_world[..., None, None, :, :]
)
prior = self.distribution(xy_grid_prev, xy_gps, accuracy)
self.belief.add_(prior)
self.belief.sub_(self.belief.max()) # normalize to avoid overflow
if self.priors is not None:
self.priors.append(prior.cpu())
return prior
|