File size: 6,527 Bytes
9665c2c
 
 
 
 
 
 
 
 
b0cf684
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) Meta Platforms, Inc. and affiliates.

import io
import pickle
from pathlib import Path
from typing import Dict, List, Optional, Tuple

import numpy as np
import rtree
from PIL import Image

from ..utils.geo import BoundaryBox, Projection
from .data import MapData
from .download import get_osm
from .parser import Groups
from .raster import Canvas, render_raster_map, render_raster_masks
from .reader import OSMData, OSMNode, OSMWay


class MapIndex:
    def __init__(
        self,
        data: MapData,
    ):
        self.index_nodes = rtree.index.Index()
        for i, node in data.nodes.items():
            self.index_nodes.insert(i, tuple(node.xy) * 2)

        self.index_lines = rtree.index.Index()
        for i, line in data.lines.items():
            bbox = tuple(np.r_[line.xy.min(0), line.xy.max(0)])
            self.index_lines.insert(i, bbox)

        self.index_areas = rtree.index.Index()
        for i, area in data.areas.items():
            xy = np.concatenate(area.outers + area.inners)
            bbox = tuple(np.r_[xy.min(0), xy.max(0)])
            self.index_areas.insert(i, bbox)

        self.data = data

    def query(self, bbox: BoundaryBox) -> Tuple[List[OSMNode], List[OSMWay]]:
        query = tuple(np.r_[bbox.min_, bbox.max_])
        ret = []
        for x in ["nodes", "lines", "areas"]:
            ids = getattr(self, "index_" + x).intersection(query)
            ret.append([getattr(self.data, x)[i] for i in ids])
        return tuple(ret)


def bbox_to_slice(bbox: BoundaryBox, canvas: Canvas):
    uv_min = np.ceil(canvas.to_uv(bbox.min_)).astype(int)
    uv_max = np.ceil(canvas.to_uv(bbox.max_)).astype(int)
    slice_ = (slice(uv_max[1], uv_min[1]), slice(uv_min[0], uv_max[0]))
    return slice_


def round_bbox(bbox: BoundaryBox, origin: np.ndarray, ppm: int):
    bbox = bbox.translate(-origin)
    bbox = BoundaryBox(np.round(bbox.min_ * ppm) / ppm, np.round(bbox.max_ * ppm) / ppm)
    return bbox.translate(origin)


class TileManager:
    def __init__(
        self,
        tiles: Dict,
        bbox: BoundaryBox,
        tile_size: int,
        ppm: int,
        projection: Projection,
        groups: Dict[str, List[str]],
        map_data: Optional[MapData] = None,
    ):
        self.origin = bbox.min_
        self.bbox = bbox
        self.tiles = tiles
        self.tile_size = tile_size
        self.ppm = ppm
        self.projection = projection
        self.groups = groups
        self.map_data = map_data
        assert np.all(tiles[0, 0].bbox.min_ == self.origin)
        for tile in tiles.values():
            assert bbox.contains(tile.bbox)

    @classmethod
    def from_bbox(
        cls,
        projection: Projection,
        bbox: BoundaryBox,
        ppm: int,
        path: Optional[Path] = None,
        tile_size: int = 128,
    ):
        bbox_osm = projection.unproject(bbox)
        if path is not None and path.is_file():
            osm = OSMData.from_file(path)
            if osm.box is not None:
                assert osm.box.contains(bbox_osm)
        else:
            osm = OSMData.from_dict(get_osm(bbox_osm, path))

        osm.add_xy_to_nodes(projection)
        map_data = MapData.from_osm(osm)
        map_index = MapIndex(map_data)

        bounds_x, bounds_y = [
            np.r_[np.arange(min_, max_, tile_size), max_]
            for min_, max_ in zip(bbox.min_, bbox.max_)
        ]
        bbox_tiles = {}
        for i, xmin in enumerate(bounds_x[:-1]):
            for j, ymin in enumerate(bounds_y[:-1]):
                bbox_tiles[i, j] = BoundaryBox(
                    [xmin, ymin], [bounds_x[i + 1], bounds_y[j + 1]]
                )

        tiles = {}
        for ij, bbox_tile in bbox_tiles.items():
            canvas = Canvas(bbox_tile, ppm)
            nodes, lines, areas = map_index.query(bbox_tile)
            masks = render_raster_masks(nodes, lines, areas, canvas)
            canvas.raster = render_raster_map(masks)
            tiles[ij] = canvas

        groups = {k: v for k, v in vars(Groups).items() if not k.startswith("__")}

        return cls(tiles, bbox, tile_size, ppm, projection, groups, map_data)

    def query(self, bbox: BoundaryBox) -> Canvas:
        bbox = round_bbox(bbox, self.bbox.min_, self.ppm)
        canvas = Canvas(bbox, self.ppm)
        raster = np.zeros((3, canvas.h, canvas.w), np.uint8)

        bbox_all = bbox & self.bbox
        ij_min = np.floor((bbox_all.min_ - self.origin) / self.tile_size).astype(int)
        ij_max = np.ceil((bbox_all.max_ - self.origin) / self.tile_size).astype(int) - 1
        for i in range(ij_min[0], ij_max[0] + 1):
            for j in range(ij_min[1], ij_max[1] + 1):
                tile = self.tiles[i, j]
                bbox_select = tile.bbox & bbox
                slice_query = bbox_to_slice(bbox_select, canvas)
                slice_tile = bbox_to_slice(bbox_select, tile)
                raster[(slice(None),) + slice_query] = tile.raster[
                    (slice(None),) + slice_tile
                ]
        canvas.raster = raster
        return canvas

    def save(self, path: Path):
        dump = {
            "bbox": self.bbox.format(),
            "tile_size": self.tile_size,
            "ppm": self.ppm,
            "groups": self.groups,
            "tiles_bbox": {},
            "tiles_raster": {},
        }
        if self.projection is not None:
            dump["ref_latlonalt"] = self.projection.latlonalt
        for ij, canvas in self.tiles.items():
            dump["tiles_bbox"][ij] = canvas.bbox.format()
            raster_bytes = io.BytesIO()
            raster = Image.fromarray(canvas.raster.transpose(1, 2, 0).astype(np.uint8))
            raster.save(raster_bytes, format="PNG")
            dump["tiles_raster"][ij] = raster_bytes
        with open(path, "wb") as fp:
            pickle.dump(dump, fp)

    @classmethod
    def load(cls, path: Path):
        with path.open("rb") as fp:
            dump = pickle.load(fp)
        tiles = {}
        for ij, bbox in dump["tiles_bbox"].items():
            tiles[ij] = Canvas(BoundaryBox.from_string(bbox), dump["ppm"])
            raster = np.asarray(Image.open(dump["tiles_raster"][ij]))
            tiles[ij].raster = raster.transpose(2, 0, 1).copy()
        projection = Projection(*dump["ref_latlonalt"])
        return cls(
            tiles,
            BoundaryBox.from_string(dump["bbox"]),
            dump["tile_size"],
            dump["ppm"],
            projection,
            dump["groups"],
        )