Spaces:
Running
Running
File size: 6,527 Bytes
9665c2c b0cf684 9665c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import io
import pickle
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import numpy as np
import rtree
from PIL import Image
from ..utils.geo import BoundaryBox, Projection
from .data import MapData
from .download import get_osm
from .parser import Groups
from .raster import Canvas, render_raster_map, render_raster_masks
from .reader import OSMData, OSMNode, OSMWay
class MapIndex:
def __init__(
self,
data: MapData,
):
self.index_nodes = rtree.index.Index()
for i, node in data.nodes.items():
self.index_nodes.insert(i, tuple(node.xy) * 2)
self.index_lines = rtree.index.Index()
for i, line in data.lines.items():
bbox = tuple(np.r_[line.xy.min(0), line.xy.max(0)])
self.index_lines.insert(i, bbox)
self.index_areas = rtree.index.Index()
for i, area in data.areas.items():
xy = np.concatenate(area.outers + area.inners)
bbox = tuple(np.r_[xy.min(0), xy.max(0)])
self.index_areas.insert(i, bbox)
self.data = data
def query(self, bbox: BoundaryBox) -> Tuple[List[OSMNode], List[OSMWay]]:
query = tuple(np.r_[bbox.min_, bbox.max_])
ret = []
for x in ["nodes", "lines", "areas"]:
ids = getattr(self, "index_" + x).intersection(query)
ret.append([getattr(self.data, x)[i] for i in ids])
return tuple(ret)
def bbox_to_slice(bbox: BoundaryBox, canvas: Canvas):
uv_min = np.ceil(canvas.to_uv(bbox.min_)).astype(int)
uv_max = np.ceil(canvas.to_uv(bbox.max_)).astype(int)
slice_ = (slice(uv_max[1], uv_min[1]), slice(uv_min[0], uv_max[0]))
return slice_
def round_bbox(bbox: BoundaryBox, origin: np.ndarray, ppm: int):
bbox = bbox.translate(-origin)
bbox = BoundaryBox(np.round(bbox.min_ * ppm) / ppm, np.round(bbox.max_ * ppm) / ppm)
return bbox.translate(origin)
class TileManager:
def __init__(
self,
tiles: Dict,
bbox: BoundaryBox,
tile_size: int,
ppm: int,
projection: Projection,
groups: Dict[str, List[str]],
map_data: Optional[MapData] = None,
):
self.origin = bbox.min_
self.bbox = bbox
self.tiles = tiles
self.tile_size = tile_size
self.ppm = ppm
self.projection = projection
self.groups = groups
self.map_data = map_data
assert np.all(tiles[0, 0].bbox.min_ == self.origin)
for tile in tiles.values():
assert bbox.contains(tile.bbox)
@classmethod
def from_bbox(
cls,
projection: Projection,
bbox: BoundaryBox,
ppm: int,
path: Optional[Path] = None,
tile_size: int = 128,
):
bbox_osm = projection.unproject(bbox)
if path is not None and path.is_file():
osm = OSMData.from_file(path)
if osm.box is not None:
assert osm.box.contains(bbox_osm)
else:
osm = OSMData.from_dict(get_osm(bbox_osm, path))
osm.add_xy_to_nodes(projection)
map_data = MapData.from_osm(osm)
map_index = MapIndex(map_data)
bounds_x, bounds_y = [
np.r_[np.arange(min_, max_, tile_size), max_]
for min_, max_ in zip(bbox.min_, bbox.max_)
]
bbox_tiles = {}
for i, xmin in enumerate(bounds_x[:-1]):
for j, ymin in enumerate(bounds_y[:-1]):
bbox_tiles[i, j] = BoundaryBox(
[xmin, ymin], [bounds_x[i + 1], bounds_y[j + 1]]
)
tiles = {}
for ij, bbox_tile in bbox_tiles.items():
canvas = Canvas(bbox_tile, ppm)
nodes, lines, areas = map_index.query(bbox_tile)
masks = render_raster_masks(nodes, lines, areas, canvas)
canvas.raster = render_raster_map(masks)
tiles[ij] = canvas
groups = {k: v for k, v in vars(Groups).items() if not k.startswith("__")}
return cls(tiles, bbox, tile_size, ppm, projection, groups, map_data)
def query(self, bbox: BoundaryBox) -> Canvas:
bbox = round_bbox(bbox, self.bbox.min_, self.ppm)
canvas = Canvas(bbox, self.ppm)
raster = np.zeros((3, canvas.h, canvas.w), np.uint8)
bbox_all = bbox & self.bbox
ij_min = np.floor((bbox_all.min_ - self.origin) / self.tile_size).astype(int)
ij_max = np.ceil((bbox_all.max_ - self.origin) / self.tile_size).astype(int) - 1
for i in range(ij_min[0], ij_max[0] + 1):
for j in range(ij_min[1], ij_max[1] + 1):
tile = self.tiles[i, j]
bbox_select = tile.bbox & bbox
slice_query = bbox_to_slice(bbox_select, canvas)
slice_tile = bbox_to_slice(bbox_select, tile)
raster[(slice(None),) + slice_query] = tile.raster[
(slice(None),) + slice_tile
]
canvas.raster = raster
return canvas
def save(self, path: Path):
dump = {
"bbox": self.bbox.format(),
"tile_size": self.tile_size,
"ppm": self.ppm,
"groups": self.groups,
"tiles_bbox": {},
"tiles_raster": {},
}
if self.projection is not None:
dump["ref_latlonalt"] = self.projection.latlonalt
for ij, canvas in self.tiles.items():
dump["tiles_bbox"][ij] = canvas.bbox.format()
raster_bytes = io.BytesIO()
raster = Image.fromarray(canvas.raster.transpose(1, 2, 0).astype(np.uint8))
raster.save(raster_bytes, format="PNG")
dump["tiles_raster"][ij] = raster_bytes
with open(path, "wb") as fp:
pickle.dump(dump, fp)
@classmethod
def load(cls, path: Path):
with path.open("rb") as fp:
dump = pickle.load(fp)
tiles = {}
for ij, bbox in dump["tiles_bbox"].items():
tiles[ij] = Canvas(BoundaryBox.from_string(bbox), dump["ppm"])
raster = np.asarray(Image.open(dump["tiles_raster"][ij]))
tiles[ij].raster = raster.transpose(2, 0, 1).copy()
projection = Projection(*dump["ref_latlonalt"])
return cls(
tiles,
BoundaryBox.from_string(dump["bbox"]),
dump["tile_size"],
dump["ppm"],
projection,
dump["groups"],
)
|