Spaces:
Running
Running
File size: 6,958 Bytes
9665c2c b0cf684 9665c2c b0cf684 9665c2c 09f8fa3 9665c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
import os.path as osp
from pathlib import Path
from typing import Optional
import hydra
import pytorch_lightning as pl
import torch
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.utilities import rank_zero_only
from . import EXPERIMENTS_PATH, logger, pl_logger
from .data import modules as data_modules
from .module import GenericModule
class CleanProgressBar(pl.callbacks.TQDMProgressBar):
def get_metrics(self, trainer, model):
items = super().get_metrics(trainer, model)
items.pop("v_num", None) # don't show the version number
items.pop("loss", None)
return items
class SeedingCallback(pl.callbacks.Callback):
def on_epoch_start_(self, trainer, module):
seed = module.cfg.experiment.seed
is_overfit = module.cfg.training.trainer.get("overfit_batches", 0) > 0
if trainer.training and not is_overfit:
seed = seed + trainer.current_epoch
# Temporarily disable the logging (does not seem to work?)
pl_logger.disabled = True
try:
pl.seed_everything(seed, workers=True)
finally:
pl_logger.disabled = False
def on_train_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
def on_validation_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
def on_test_epoch_start(self, *args, **kwargs):
self.on_epoch_start_(*args, **kwargs)
class ConsoleLogger(pl.callbacks.Callback):
@rank_zero_only
def on_train_epoch_start(self, trainer, module):
logger.info(
"New training epoch %d for experiment '%s'.",
module.current_epoch,
module.cfg.experiment.name,
)
@rank_zero_only
def on_validation_epoch_end(self, trainer, module):
results = {
**dict(module.metrics_val.items()),
**dict(module.losses_val.items()),
}
results = [f"{k} {v.compute():.3E}" for k, v in results.items()]
logger.info(f'[Validation] {{{", ".join(results)}}}')
def find_last_checkpoint_path(experiment_dir):
cls = pl.callbacks.ModelCheckpoint
path = osp.join(experiment_dir, cls.CHECKPOINT_NAME_LAST + cls.FILE_EXTENSION)
if osp.exists(path):
return path
else:
return None
def prepare_experiment_dir(experiment_dir, cfg, rank):
config_path = osp.join(experiment_dir, "config.yaml")
last_checkpoint_path = find_last_checkpoint_path(experiment_dir)
if last_checkpoint_path is not None:
if rank == 0:
logger.info(
"Resuming the training from checkpoint %s", last_checkpoint_path
)
if osp.exists(config_path):
with open(config_path, "r") as fp:
cfg_prev = OmegaConf.create(fp.read())
compare_keys = ["experiment", "data", "model", "training"]
if OmegaConf.masked_copy(cfg, compare_keys) != OmegaConf.masked_copy(
cfg_prev, compare_keys
):
raise ValueError(
"Attempting to resume training with a different config: "
f"{OmegaConf.masked_copy(cfg, compare_keys)} vs "
f"{OmegaConf.masked_copy(cfg_prev, compare_keys)}"
)
if rank == 0:
Path(experiment_dir).mkdir(exist_ok=True, parents=True)
with open(config_path, "w") as fp:
OmegaConf.save(cfg, fp)
return last_checkpoint_path
def train(cfg: DictConfig, job_id: Optional[int] = None):
torch.set_float32_matmul_precision("medium")
OmegaConf.resolve(cfg)
rank = rank_zero_only.rank
if rank == 0:
logger.info("Starting training with config:\n%s", OmegaConf.to_yaml(cfg))
if cfg.experiment.gpus in (None, 0):
logger.warning("Will train on CPU...")
cfg.experiment.gpus = 0
elif not torch.cuda.is_available():
raise ValueError("Requested GPU but no NVIDIA drivers found.")
pl.seed_everything(cfg.experiment.seed, workers=True)
init_checkpoint_path = cfg.training.get("finetune_from_checkpoint")
if init_checkpoint_path is not None:
logger.info("Initializing the model from checkpoint %s.", init_checkpoint_path)
model = GenericModule.load_from_checkpoint(
Path(init_checkpoint_path), strict=True, find_best=False, cfg=cfg
)
else:
model = GenericModule(cfg)
if rank == 0:
logger.info("Network:\n%s", model.model)
experiment_dir = osp.join(EXPERIMENTS_PATH, cfg.experiment.name)
last_checkpoint_path = prepare_experiment_dir(experiment_dir, cfg, rank)
checkpointing_epoch = pl.callbacks.ModelCheckpoint(
dirpath=experiment_dir,
filename="checkpoint-{epoch:02d}",
save_last=True,
every_n_epochs=1,
save_on_train_epoch_end=True,
verbose=True,
**cfg.training.checkpointing,
)
checkpointing_step = pl.callbacks.ModelCheckpoint(
dirpath=experiment_dir,
filename="checkpoint-{step}",
save_last=True,
every_n_train_steps=20000,
verbose=True,
**cfg.training.checkpointing,
)
checkpointing_step.CHECKPOINT_NAME_LAST = "last-step"
strategy = None
if cfg.experiment.gpus > 1:
strategy = pl.strategies.DDPStrategy(find_unused_parameters=False)
for split in ["train", "val"]:
cfg.data["loading"][split].batch_size = (
cfg.data["loading"][split].batch_size // cfg.experiment.gpus
)
cfg.data["loading"][split].num_workers = int(
(cfg.data["loading"][split].num_workers + cfg.experiment.gpus - 1)
/ cfg.experiment.gpus
)
data = data_modules[cfg.data.get("name", "mapillary")](cfg.data)
tb_args = {"name": cfg.experiment.name, "version": ""}
tb = pl.loggers.TensorBoardLogger(EXPERIMENTS_PATH, **tb_args)
callbacks = [
checkpointing_epoch,
checkpointing_step,
pl.callbacks.LearningRateMonitor(),
SeedingCallback(),
CleanProgressBar(),
ConsoleLogger(),
]
if cfg.experiment.gpus > 0:
callbacks.append(pl.callbacks.DeviceStatsMonitor())
trainer = pl.Trainer(
default_root_dir=experiment_dir,
detect_anomaly=False,
enable_model_summary=False,
sync_batchnorm=True,
enable_checkpointing=True,
logger=tb,
callbacks=callbacks,
strategy=strategy,
check_val_every_n_epoch=1,
accelerator="gpu",
num_nodes=1,
**cfg.training.trainer,
)
trainer.fit(model, data, ckpt_path=last_checkpoint_path)
@hydra.main(
config_path=osp.join(osp.dirname(__file__), "conf"), config_name="orienternet"
)
def main(cfg: DictConfig) -> None:
train(cfg)
if __name__ == "__main__":
main()
|