File size: 13,733 Bytes
9665c2c
 
 
b0cf684
9665c2c
 
b0cf684
9665c2c
 
 
 
b0cf684
9665c2c
 
 
 
 
 
 
b0cf684
 
9665c2c
 
 
 
 
b0cf684
9665c2c
b0cf684
 
 
 
 
 
 
 
9665c2c
b0cf684
 
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e89eb
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0358e39
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e89eb
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442a6cc
9665c2c
 
 
 
 
 
 
 
442a6cc
 
 
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71e89eb
9665c2c
 
 
 
71e89eb
9665c2c
 
 
 
 
 
 
 
71e89eb
9665c2c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright (c) Meta Platforms, Inc. and affiliates.

import argparse
import asyncio
import json
import shutil
from collections import defaultdict
from pathlib import Path
from typing import List

import cv2
import numpy as np
from omegaconf import DictConfig, OmegaConf
from opensfm.pygeometry import Camera
from opensfm.pymap import Shot
from opensfm.undistort import (
    perspective_camera_from_fisheye,
    perspective_camera_from_perspective,
)
from tqdm import tqdm
from tqdm.contrib.concurrent import thread_map

from ... import logger
from ...osm.tiling import TileManager
from ...osm.viz import GeoPlotter
from ...utils.geo import BoundaryBox, Projection
from ...utils.io import DATA_URL, download_file, write_json
from ..utils import decompose_rotmat
from .dataset import MapillaryDataModule
from .download import (
    MapillaryDownloader,
    fetch_image_infos,
    fetch_images_pixels,
    image_filename,
    opensfm_shot_from_info,
)
from .utils import (
    CameraUndistorter,
    PanoramaUndistorter,
    keyframe_selection,
    perspective_camera_from_pano,
    scale_camera,
    undistort_shot,
)

location_to_params = {
    "sanfrancisco_soma": {
        "bbox": BoundaryBox(
            [-122.410307, 37.770364][::-1], [-122.388772, 37.795545][::-1]
        ),
        "camera_models": ["GoPro Max"],
        "osm_file": "sanfrancisco.osm",
    },
    "sanfrancisco_hayes": {
        "bbox": BoundaryBox(
            [-122.438415, 37.768634][::-1], [-122.410605, 37.783894][::-1]
        ),
        "camera_models": ["GoPro Max"],
        "osm_file": "sanfrancisco.osm",
    },
    "amsterdam": {
        "bbox": BoundaryBox([4.845284, 52.340679][::-1], [4.926147, 52.386299][::-1]),
        "camera_models": ["GoPro Max"],
        "osm_file": "amsterdam.osm",
    },
    "lemans": {
        "bbox": BoundaryBox([0.185752, 47.995125][::-1], [0.224088, 48.014209][::-1]),
        "owners": ["xXOocM1jUB4jaaeukKkmgw"],  # sogefi
        "osm_file": "lemans.osm",
    },
    "berlin": {
        "bbox": BoundaryBox([13.416271, 52.459656][::-1], [13.469829, 52.499195][::-1]),
        "owners": ["LT3ajUxH6qsosamrOHIrFw"],  # supaplex030
        "osm_file": "berlin.osm",
    },
    "montrouge": {
        "bbox": BoundaryBox([2.298958, 48.80874][::-1], [2.332989, 48.825276][::-1]),
        "owners": [
            "XtzGKZX2_VIJRoiJ8IWRNQ",
            "C4ENdWpJdFNf8CvnQd7NrQ",
            "e_ZBE6mFd7CYNjRSpLl-Lg",
        ],  # overflorian, phyks, francois2
        "camera_models": ["LG-R105"],
        "osm_file": "paris.osm",
    },
    "nantes": {
        "bbox": BoundaryBox([-1.585839, 47.198289][::-1], [-1.51318, 47.236161][::-1]),
        "owners": [
            "jGdq3CL-9N-Esvj3mtCWew",
            "s-j5BH9JRIzsgORgaJF3aA",
        ],  # c_mobilite, cartocite
        "osm_file": "nantes.osm",
    },
    "toulouse": {
        "bbox": BoundaryBox([1.429457, 43.591434][::-1], [1.456653, 43.61343][::-1]),
        "owners": ["MNkhq6MCoPsdQNGTMh3qsQ"],  # tyndare
        "osm_file": "toulouse.osm",
    },
    "vilnius": {
        "bbox": BoundaryBox([25.258633, 54.672956][::-1], [25.296094, 54.696755][::-1]),
        "owners": ["bClduFF6Gq16cfwCdhWivw", "u5ukBseATUS8jUbtE43fcO"],  # kedas, vms
        "osm_file": "vilnius.osm",
    },
    "helsinki": {
        "bbox": BoundaryBox(
            [24.8975480117, 60.1449128318][::-1], [24.9816543235, 60.1770977471][::-1]
        ),
        "camera_types": ["spherical", "equirectangular"],
        "osm_file": "helsinki.osm",
    },
    "milan": {
        "bbox": BoundaryBox(
            [9.1732723899, 45.4810977947][::-1],
            [9.2255987917, 45.5284238563][::-1],
        ),
        "camera_types": ["spherical", "equirectangular"],
        "osm_file": "milan.osm",
    },
    "avignon": {
        "bbox": BoundaryBox(
            [4.7887045302, 43.9416178156][::-1], [4.8227015622, 43.9584848909][::-1]
        ),
        "camera_types": ["spherical", "equirectangular"],
        "osm_file": "avignon.osm",
    },
    "paris": {
        "bbox": BoundaryBox([2.306823, 48.833827][::-1], [2.39067, 48.889335][::-1]),
        "camera_types": ["spherical", "equirectangular"],
        "osm_file": "paris.osm",
    },
}


default_cfg = OmegaConf.create(
    {
        "max_image_size": 512,
        "do_legacy_pano_offset": True,
        "min_dist_between_keyframes": 4,
        "tiling": {
            "tile_size": 128,
            "margin": 128,
            "ppm": 2,
        },
    }
)


def get_pano_offset(image_info: dict, do_legacy: bool = False) -> float:
    if do_legacy:
        seed = int(image_info["sfm_cluster"]["id"])
    else:
        seed = image_info["sequence"].__hash__()
    seed = seed % (2**32 - 1)
    return np.random.RandomState(seed).uniform(-45, 45)


def process_shot(
    shot: Shot, info: dict, image_path: Path, output_dir: Path, cfg: DictConfig
) -> List[Shot]:
    if not image_path.exists():
        return None

    image_orig = cv2.imread(str(image_path))
    max_size = cfg.max_image_size
    pano_offset = None

    camera = shot.camera
    camera.width, camera.height = image_orig.shape[:2][::-1]
    if camera.is_panorama(camera.projection_type):
        camera_new = perspective_camera_from_pano(camera, max_size)
        undistorter = PanoramaUndistorter(camera, camera_new)
        pano_offset = get_pano_offset(info, cfg.do_legacy_pano_offset)
    elif camera.projection_type in ["fisheye", "perspective"]:
        if camera.projection_type == "fisheye":
            camera_new = perspective_camera_from_fisheye(camera)
        else:
            camera_new = perspective_camera_from_perspective(camera)
        camera_new = scale_camera(camera_new, max_size)
        camera_new.id = camera.id + "_undistorted"
        undistorter = CameraUndistorter(camera, camera_new)
    else:
        raise NotImplementedError(camera.projection_type)

    shots_undist, images_undist = undistort_shot(
        image_orig, shot, undistorter, pano_offset
    )
    for shot, image in zip(shots_undist, images_undist):
        cv2.imwrite(str(output_dir / f"{shot.id}.jpg"), image)

    return shots_undist


def pack_shot_dict(shot: Shot, info: dict) -> dict:
    latlong = info["computed_geometry"]["coordinates"][::-1]
    latlong_gps = info["geometry"]["coordinates"][::-1]
    w_p_c = shot.pose.get_origin()
    w_r_c = shot.pose.get_R_cam_to_world()
    rpy = decompose_rotmat(w_r_c)
    return dict(
        camera_id=shot.camera.id,
        latlong=latlong,
        t_c2w=w_p_c,
        R_c2w=w_r_c,
        roll_pitch_yaw=rpy,
        capture_time=info["captured_at"],
        gps_position=np.r_[latlong_gps, info["altitude"]],
        compass_angle=info["compass_angle"],
        chunk_id=int(info["sfm_cluster"]["id"]),
    )


def pack_camera_dict(camera: Camera) -> dict:
    assert camera.projection_type == "perspective"
    K = camera.get_K_in_pixel_coordinates(camera.width, camera.height)
    return dict(
        id=camera.id,
        model="PINHOLE",
        width=camera.width,
        height=camera.height,
        params=K[[0, 1, 0, 1], [0, 1, 2, 2]],
    )


def process_sequence(
    image_ids: List[int],
    image_infos: dict,
    projection: Projection,
    cfg: DictConfig,
    raw_image_dir: Path,
    out_image_dir: Path,
):
    shots = []
    image_ids = sorted(image_ids, key=lambda i: image_infos[i]["captured_at"])
    for i in image_ids:
        _, shot = opensfm_shot_from_info(image_infos[i], projection)
        shots.append(shot)
    if not shots:
        return {}

    shot_idxs = keyframe_selection(shots, min_dist=cfg.min_dist_between_keyframes)
    shots = [shots[i] for i in shot_idxs]

    shots_out = thread_map(
        lambda shot: process_shot(
            shot,
            image_infos[int(shot.id)],
            raw_image_dir / image_filename.format(image_id=shot.id),
            out_image_dir,
            cfg,
        ),
        shots,
        disable=True,
    )
    shots_out = [(i, s) for i, ss in enumerate(shots_out) if ss is not None for s in ss]

    dump = {}
    for index, shot in shots_out:
        i, suffix = shot.id.rsplit("_", 1)
        info = image_infos[int(i)]
        seq_id = info["sequence"]
        is_pano = not suffix.endswith("undistorted")
        if is_pano:
            seq_id += f"_{suffix}"
        if seq_id not in dump:
            dump[seq_id] = dict(views={}, cameras={})

        view = pack_shot_dict(shot, info)
        view["index"] = index
        dump[seq_id]["views"][shot.id] = view
        dump[seq_id]["cameras"][shot.camera.id] = pack_camera_dict(shot.camera)
    return dump


def process_location(
    location: str,
    data_dir: Path,
    split_path: Path,
    token: str,
    cfg: DictConfig,
    generate_tiles: bool = False,
):
    params = location_to_params[location]
    bbox = params["bbox"]
    projection = Projection(*bbox.center)

    splits = json.loads(split_path.read_text())
    image_ids = [i for split in splits.values() for i in split[location]]

    loc_dir = data_dir / location
    infos_dir = loc_dir / "image_infos"
    raw_image_dir = loc_dir / "images_raw"
    out_image_dir = loc_dir / "images"
    for d in (infos_dir, raw_image_dir, out_image_dir):
        d.mkdir(parents=True, exist_ok=True)

    downloader = MapillaryDownloader(token)
    loop = asyncio.get_event_loop()

    logger.info("Fetching metadata for all images.")
    image_infos, num_fail = loop.run_until_complete(
        fetch_image_infos(image_ids, downloader, infos_dir)
    )
    logger.info("%d failures (%.1f%%).", num_fail, 100 * num_fail / len(image_ids))

    logger.info("Fetching image pixels.")
    image_urls = [(i, info["thumb_2048_url"]) for i, info in image_infos.items()]
    num_fail = loop.run_until_complete(
        fetch_images_pixels(image_urls, downloader, raw_image_dir)
    )
    logger.info("%d failures (%.1f%%).", num_fail, 100 * num_fail / len(image_urls))

    seq_to_image_ids = defaultdict(list)
    for i, info in image_infos.items():
        seq_to_image_ids[info["sequence"]].append(i)
    seq_to_image_ids = dict(seq_to_image_ids)

    dump = {}
    for seq_image_ids in tqdm(seq_to_image_ids.values()):
        dump.update(
            process_sequence(
                seq_image_ids,
                image_infos,
                projection,
                cfg,
                raw_image_dir,
                out_image_dir,
            )
        )
    write_json(loc_dir / "dump.json", dump)

    # Get the view locations
    view_ids = []
    views_latlon = []
    for seq in dump:
        for view_id, view in dump[seq]["views"].items():
            view_ids.append(view_id)
            views_latlon.append(view["latlong"])
    views_latlon = np.stack(views_latlon)
    view_ids = np.array(view_ids)
    views_xy = projection.project(views_latlon)

    tiles_path = loc_dir / MapillaryDataModule.default_cfg["tiles_filename"]
    if generate_tiles:
        logger.info("Creating the map tiles.")
        bbox_data = BoundaryBox(views_xy.min(0), views_xy.max(0))
        bbox_tiling = bbox_data + cfg.tiling.margin
        osm_dir = data_dir / "osm"
        osm_path = osm_dir / params["osm_file"]
        if not osm_path.exists():
            logger.info("Downloading OSM raw data.")
            download_file(DATA_URL + f"/osm/{params['osm_file']}", osm_path)
        if not osm_path.exists():
            raise FileNotFoundError(f"Cannot find OSM data file {osm_path}.")
        tile_manager = TileManager.from_bbox(
            projection,
            bbox_tiling,
            cfg.tiling.ppm,
            tile_size=cfg.tiling.tile_size,
            path=osm_path,
        )
        tile_manager.save(tiles_path)
    else:
        logger.info("Downloading pre-generated map tiles.")
        download_file(DATA_URL + f"/tiles/{location}.pkl", tiles_path)
        tile_manager = TileManager.load(tiles_path)

    # Visualize the data split
    plotter = GeoPlotter()
    view_ids_val = set(splits["val"][location])
    is_val = np.array([int(i.rsplit("_", 1)[0]) in view_ids_val for i in view_ids])
    plotter.points(views_latlon[~is_val], "red", view_ids[~is_val], "train")
    plotter.points(views_latlon[is_val], "green", view_ids[is_val], "val")
    plotter.bbox(bbox, "blue", "query bounding box")
    plotter.bbox(
        projection.unproject(tile_manager.bbox), "black", "tiling bounding box"
    )
    geo_viz_path = loc_dir / f"split_{location}.html"
    plotter.fig.write_html(geo_viz_path)
    logger.info("Wrote split visualization to %s.", geo_viz_path)

    shutil.rmtree(raw_image_dir)
    logger.info("Done processing for location %s.", location)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--locations", type=str, nargs="+", default=list(location_to_params)
    )
    parser.add_argument("--split_filename", type=str, default="splits_MGL_13loc.json")
    parser.add_argument("--token", type=str, required=True)
    parser.add_argument(
        "--data_dir", type=Path, default=MapillaryDataModule.default_cfg["data_dir"]
    )
    parser.add_argument("--generate_tiles", action="store_true")
    parser.add_argument("dotlist", nargs="*")
    args = parser.parse_args()

    args.data_dir.mkdir(exist_ok=True, parents=True)
    shutil.copy(Path(__file__).parent / args.split_filename, args.data_dir)
    cfg_ = OmegaConf.merge(default_cfg, OmegaConf.from_cli(args.dotlist))

    for location in args.locations:
        logger.info("Starting processing for location %s.", location)
        process_location(
            location,
            args.data_dir,
            args.data_dir / args.split_filename,
            args.token,
            cfg_,
            args.generate_tiles,
        )