File size: 9,160 Bytes
9665c2c
 
 
 
 
b0cf684
9665c2c
 
 
 
 
b0cf684
9665c2c
 
b0cf684
9665c2c
 
 
b0cf684
9665c2c
b0cf684
9665c2c
b0cf684
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213aff4
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Copyright (c) Meta Platforms, Inc. and affiliates.

import functools
from itertools import islice
from pathlib import Path
from typing import Callable, Dict, Optional, Tuple

import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import seed_everything
from torchmetrics import MetricCollection
from tqdm import tqdm

from .. import EXPERIMENTS_PATH, logger
from ..data.torch import collate, unbatch_to_device
from ..models.metrics import AngleError, LateralLongitudinalError, Location2DError
from ..models.sequential import GPSAligner, RigidAligner
from ..models.voting import argmax_xyr, fuse_gps
from ..module import GenericModule
from ..utils.io import DATA_URL, download_file
from .utils import write_dump
from .viz import plot_example_sequential, plot_example_single

pretrained_models = dict(
    OrienterNet_MGL=("orienternet_mgl.ckpt", dict(num_rotations=256)),
)


def resolve_checkpoint_path(experiment_or_path: str) -> Path:
    path = Path(experiment_or_path)
    if not path.exists():
        # provided name of experiment
        path = Path(EXPERIMENTS_PATH, *experiment_or_path.split("/"))
        if not path.exists():
            if experiment_or_path in set(p for p, _ in pretrained_models.values()):
                download_file(f"{DATA_URL}/{experiment_or_path}", path)
            else:
                raise FileNotFoundError(path)
    if path.is_file():
        return path
    # provided only the experiment name
    maybe_path = path / "last-step.ckpt"
    if not maybe_path.exists():
        maybe_path = path / "step.ckpt"
    if not maybe_path.exists():
        raise FileNotFoundError(f"Could not find any checkpoint in {path}.")
    return maybe_path


@torch.no_grad()
def evaluate_single_image(
    dataloader: torch.utils.data.DataLoader,
    model: GenericModule,
    num: Optional[int] = None,
    callback: Optional[Callable] = None,
    progress: bool = True,
    mask_index: Optional[Tuple[int]] = None,
    has_gps: bool = False,
):
    ppm = model.model.conf.pixel_per_meter
    metrics = MetricCollection(model.model.metrics())
    metrics["directional_error"] = LateralLongitudinalError(ppm)
    if has_gps:
        metrics["xy_gps_error"] = Location2DError("uv_gps", ppm)
        metrics["xy_fused_error"] = Location2DError("uv_fused", ppm)
        metrics["yaw_fused_error"] = AngleError("yaw_fused")
    metrics = metrics.to(model.device)

    for i, batch_ in enumerate(
        islice(tqdm(dataloader, total=num, disable=not progress), num)
    ):
        batch = model.transfer_batch_to_device(batch_, model.device, i)
        # Ablation: mask semantic classes
        if mask_index is not None:
            mask = batch["map"][0, mask_index[0]] == (mask_index[1] + 1)
            batch["map"][0, mask_index[0]][mask] = 0
        pred = model(batch)

        if has_gps:
            (uv_gps,) = pred["uv_gps"] = batch["uv_gps"]
            pred["log_probs_fused"] = fuse_gps(
                pred["log_probs"], uv_gps, ppm, sigma=batch["accuracy_gps"]
            )
            uvt_fused = argmax_xyr(pred["log_probs_fused"])
            pred["uv_fused"] = uvt_fused[..., :2]
            pred["yaw_fused"] = uvt_fused[..., -1]
            del uv_gps, uvt_fused

        results = metrics(pred, batch)
        if callback is not None:
            callback(
                i, model, unbatch_to_device(pred), unbatch_to_device(batch_), results
            )
        del batch_, batch, pred, results

    return metrics.cpu()


@torch.no_grad()
def evaluate_sequential(
    dataset: torch.utils.data.Dataset,
    chunk2idx: Dict,
    model: GenericModule,
    num: Optional[int] = None,
    shuffle: bool = False,
    callback: Optional[Callable] = None,
    progress: bool = True,
    num_rotations: int = 512,
    mask_index: Optional[Tuple[int]] = None,
    has_gps: bool = False,
):
    chunk_keys = list(chunk2idx)
    if shuffle:
        chunk_keys = [chunk_keys[i] for i in torch.randperm(len(chunk_keys))]
    if num is not None:
        chunk_keys = chunk_keys[:num]
    lengths = [len(chunk2idx[k]) for k in chunk_keys]
    logger.info(
        "Min/max/med lengths: %d/%d/%d, total number of images: %d",
        min(lengths),
        np.median(lengths),
        max(lengths),
        sum(lengths),
    )
    viz = callback is not None

    metrics = MetricCollection(model.model.metrics())
    ppm = model.model.conf.pixel_per_meter
    metrics["directional_error"] = LateralLongitudinalError(ppm)
    metrics["xy_seq_error"] = Location2DError("uv_seq", ppm)
    metrics["yaw_seq_error"] = AngleError("yaw_seq")
    metrics["directional_seq_error"] = LateralLongitudinalError(ppm, key="uv_seq")
    if has_gps:
        metrics["xy_gps_error"] = Location2DError("uv_gps", ppm)
        metrics["xy_gps_seq_error"] = Location2DError("uv_gps_seq", ppm)
        metrics["yaw_gps_seq_error"] = AngleError("yaw_gps_seq")
    metrics = metrics.to(model.device)

    keys_save = ["uvr_max", "uv_max", "yaw_max", "uv_expectation"]
    if has_gps:
        keys_save.append("uv_gps")
    if viz:
        keys_save.append("log_probs")

    for chunk_index, key in enumerate(tqdm(chunk_keys, disable=not progress)):
        indices = chunk2idx[key]
        aligner = RigidAligner(track_priors=viz, num_rotations=num_rotations)
        if has_gps:
            aligner_gps = GPSAligner(track_priors=viz, num_rotations=num_rotations)
        batches = []
        preds = []
        for i in indices:
            data = dataset[i]
            data = model.transfer_batch_to_device(data, model.device, 0)
            pred = model(collate([data]))

            canvas = data["canvas"]
            data["xy_geo"] = xy = canvas.to_xy(data["uv"].double())
            data["yaw"] = yaw = data["roll_pitch_yaw"][-1].double()
            aligner.update(pred["log_probs"][0], canvas, xy, yaw)

            if has_gps:
                (uv_gps) = pred["uv_gps"] = data["uv_gps"][None]
                xy_gps = canvas.to_xy(uv_gps.double())
                aligner_gps.update(xy_gps, data["accuracy_gps"], canvas, xy, yaw)

            if not viz:
                data.pop("image")
                data.pop("map")
            batches.append(data)
            preds.append({k: pred[k][0] for k in keys_save})
            del pred

        xy_gt = torch.stack([b["xy_geo"] for b in batches])
        yaw_gt = torch.stack([b["yaw"] for b in batches])
        aligner.compute()
        xy_seq, yaw_seq = aligner.transform(xy_gt, yaw_gt)
        if has_gps:
            aligner_gps.compute()
            xy_gps_seq, yaw_gps_seq = aligner_gps.transform(xy_gt, yaw_gt)
        results = []
        for i in range(len(indices)):
            preds[i]["uv_seq"] = batches[i]["canvas"].to_uv(xy_seq[i]).float()
            preds[i]["yaw_seq"] = yaw_seq[i].float()
            if has_gps:
                preds[i]["uv_gps_seq"] = (
                    batches[i]["canvas"].to_uv(xy_gps_seq[i]).float()
                )
                preds[i]["yaw_gps_seq"] = yaw_gps_seq[i].float()
            results.append(metrics(preds[i], batches[i]))
        if viz:
            callback(chunk_index, model, batches, preds, results, aligner)
        del aligner, preds, batches, results
    return metrics.cpu()


def evaluate(
    experiment: str,
    cfg: DictConfig,
    dataset,
    split: str,
    sequential: bool = False,
    output_dir: Optional[Path] = None,
    callback: Optional[Callable] = None,
    num_workers: int = 1,
    viz_kwargs=None,
    **kwargs,
):
    if experiment in pretrained_models:
        experiment, cfg_override = pretrained_models[experiment]
        cfg = OmegaConf.merge(OmegaConf.create(dict(model=cfg_override)), cfg)

    logger.info("Evaluating model %s with config %s", experiment, cfg)
    checkpoint_path = resolve_checkpoint_path(experiment)
    model = GenericModule.load_from_checkpoint(
        checkpoint_path, cfg=cfg, find_best=not experiment.endswith(".ckpt")
    )
    model = model.eval()
    if torch.cuda.is_available():
        model = model.cuda()

    dataset.prepare_data()
    dataset.setup()

    if output_dir is not None:
        output_dir.mkdir(exist_ok=True, parents=True)
        if callback is None:
            if sequential:
                callback = plot_example_sequential
            else:
                callback = plot_example_single
            callback = functools.partial(
                callback, out_dir=output_dir, **(viz_kwargs or {})
            )
    kwargs = {**kwargs, "callback": callback}

    seed_everything(dataset.cfg.seed)
    if sequential:
        dset, chunk2idx = dataset.sequence_dataset(split, **cfg.chunking)
        metrics = evaluate_sequential(dset, chunk2idx, model, **kwargs)
    else:
        loader = dataset.dataloader(split, shuffle=True, num_workers=num_workers)
        metrics = evaluate_single_image(loader, model, **kwargs)

    results = metrics.compute()
    logger.info("All results: %s", results)
    if output_dir is not None:
        write_dump(output_dir, experiment, cfg, results, metrics)
        logger.info("Outputs have been written to %s.", output_dir)
    return metrics