File size: 4,610 Bytes
9665c2c
 
 
 
 
 
b0cf684
9665c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) Meta Platforms, Inc. and affiliates.

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import PIL.Image
import plotly.graph_objects as go

from ..utils.viz_2d import add_text
from .parser import Groups


class GeoPlotter:
    def __init__(self, zoom=12, **kwargs):
        self.fig = go.Figure()
        self.fig.update_layout(
            mapbox_style="open-street-map",
            autosize=True,
            mapbox_zoom=zoom,
            margin={"r": 0, "t": 0, "l": 0, "b": 0},
            showlegend=True,
            **kwargs,
        )

    def points(self, latlons, color, text=None, name=None, size=5, **kwargs):
        latlons = np.asarray(latlons)
        self.fig.add_trace(
            go.Scattermapbox(
                lat=latlons[..., 0],
                lon=latlons[..., 1],
                mode="markers",
                text=text,
                marker_color=color,
                marker_size=size,
                name=name,
                **kwargs,
            )
        )
        center = latlons.reshape(-1, 2).mean(0)
        self.fig.update_layout(
            mapbox_center=dict(zip(("lat", "lon"), center)),
        )

    def bbox(self, bbox, color, name=None, **kwargs):
        corners = np.stack(
            [bbox.min_, bbox.left_top, bbox.max_, bbox.right_bottom, bbox.min_]
        )
        self.fig.add_trace(
            go.Scattermapbox(
                lat=corners[:, 0],
                lon=corners[:, 1],
                mode="lines",
                marker_color=color,
                name=name,
                **kwargs,
            )
        )
        self.fig.update_layout(
            mapbox_center=dict(zip(("lat", "lon"), bbox.center)),
        )

    def raster(self, raster, bbox, below="traces", **kwargs):
        if not np.issubdtype(raster.dtype, np.integer):
            raster = (raster * 255).astype(np.uint8)
        raster = PIL.Image.fromarray(raster)
        corners = np.stack(
            [
                bbox.min_,
                bbox.left_top,
                bbox.max_,
                bbox.right_bottom,
            ]
        )[::-1, ::-1]
        layers = [*self.fig.layout.mapbox.layers]
        layers.append(
            dict(
                sourcetype="image",
                source=raster,
                coordinates=corners,
                below=below,
                **kwargs,
            )
        )
        self.fig.layout.mapbox.layers = layers


map_colors = {
    "building": (84, 155, 255),
    "parking": (255, 229, 145),
    "playground": (150, 133, 125),
    "grass": (188, 255, 143),
    "park": (0, 158, 16),
    "forest": (0, 92, 9),
    "water": (184, 213, 255),
    "fence": (238, 0, 255),
    "wall": (0, 0, 0),
    "hedge": (107, 68, 48),
    "kerb": (255, 234, 0),
    "building_outline": (0, 0, 255),
    "cycleway": (0, 251, 255),
    "path": (8, 237, 0),
    "road": (255, 0, 0),
    "tree_row": (0, 92, 9),
    "busway": (255, 128, 0),
    "void": [int(255 * 0.9)] * 3,
}


class Colormap:
    colors_areas = np.stack([map_colors[k] for k in ["void"] + Groups.areas])
    colors_ways = np.stack([map_colors[k] for k in ["void"] + Groups.ways])

    @classmethod
    def apply(cls, rasters):
        return (
            np.where(
                rasters[1, ..., None] > 0,
                cls.colors_ways[rasters[1]],
                cls.colors_areas[rasters[0]],
            )
            / 255.0
        )

    @classmethod
    def add_colorbar(cls):
        ax2 = plt.gcf().add_axes([1, 0.1, 0.02, 0.8])
        color_list = np.r_[cls.colors_areas[1:], cls.colors_ways[1:]] / 255.0
        cmap = mpl.colors.ListedColormap(color_list[::-1])
        ticks = np.linspace(0, 1, len(color_list), endpoint=False)
        ticks += 1 / len(color_list) / 2
        cb = mpl.colorbar.ColorbarBase(
            ax2,
            cmap=cmap,
            orientation="vertical",
            ticks=ticks,
        )
        cb.set_ticklabels((Groups.areas + Groups.ways)[::-1])
        ax2.tick_params(labelsize=15)


def plot_nodes(idx, raster, fontsize=8, size=15):
    ax = plt.gcf().axes[idx]
    ax.autoscale(enable=False)
    nodes_xy = np.stack(np.where(raster > 0)[::-1], -1)
    nodes_val = raster[tuple(nodes_xy.T[::-1])] - 1
    ax.scatter(*nodes_xy.T, c="k", s=size)
    for xy, val in zip(nodes_xy, nodes_val):
        group = Groups.nodes[val]
        add_text(
            idx,
            group,
            xy + 2,
            lcolor=None,
            fs=fontsize,
            color="k",
            normalized=False,
            ha="center",
        )