Spaces:
Running
Running
File size: 5,274 Bytes
9665c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "e30d832c",
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"\n",
"from pathlib import Path\n",
"import torch\n",
"import yaml\n",
"from torchmetrics import MetricCollection\n",
"from omegaconf import OmegaConf as OC\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib as mpl\n",
"import numpy as np\n",
"from pytorch_lightning import seed_everything\n",
"\n",
"import maploc\n",
"from maploc.data import MapillaryDataModule\n",
"from maploc.data.torch import unbatch_to_device\n",
"from maploc.module import GenericModule\n",
"from maploc.models.metrics import Location2DError, AngleError\n",
"from maploc.evaluation.run import resolve_checkpoint_path\n",
"from maploc.evaluation.viz import plot_example_single\n",
"\n",
"from maploc.models.voting import argmax_xyr, fuse_gps\n",
"from maploc.osm.viz import Colormap, plot_nodes\n",
"from maploc.utils.viz_2d import plot_images, features_to_RGB, save_plot, add_text\n",
"from maploc.utils.viz_localization import likelihood_overlay, plot_pose, plot_dense_rotations, add_circle_inset\n",
"\n",
"torch.set_grad_enabled(False);\n",
"plt.rcParams.update({'figure.max_open_warning': 0})"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc8bd313",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"conf = OC.load(Path(maploc.__file__).parent / 'conf/data/mapillary.yaml')\n",
"conf = OC.merge(conf, OC.create(yaml.full_load(\"\"\"\n",
"data_dir: \"../datasets/MGL_release\"\n",
"loading:\n",
" val: {batch_size: 1, num_workers: 0}\n",
" train: ${.val}\n",
"add_map_mask: true\n",
"return_gps: true\n",
"\"\"\")))\n",
"OC.resolve(conf)\n",
"dataset = MapillaryDataModule(conf)\n",
"dataset.prepare_data()\n",
"dataset.setup()\n",
"sampler = None"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c267ed66",
"metadata": {},
"outputs": [],
"source": [
"experiment = \"orienternet_mgl.ckpt\"\n",
"# experiment = \"experiment_name\" # find the best checkpoint\n",
"# experiment = \"experiment_name/checkpoint-step=N.ckpt\" # a given checkpoint\n",
"path = resolve_checkpoint_path(experiment)\n",
"print(path)\n",
"cfg = {'model': {\"num_rotations\": 360, \"apply_map_prior\": True}}\n",
"model = GenericModule.load_from_checkpoint(\n",
" path, strict=True, find_best=not experiment.endswith('.ckpt'), cfg=cfg)\n",
"model = model.eval().cuda()\n",
"assert model.cfg.data.resize_image == dataset.cfg.resize_image"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48efb4e3",
"metadata": {},
"outputs": [],
"source": [
"out_dir = None #Path('outputs_mgl_failures/')\n",
"if out_dir is not None:\n",
" !mkdir -p $out_dir/full\n",
"\n",
"seed_everything(25) # best = 25\n",
"loader = dataset.dataloader(\"val\", shuffle=sampler is None, sampler=sampler)\n",
"metrics = MetricCollection(model.model.metrics()).to(model.device)\n",
"metrics[\"xy_gps_error\"] = Location2DError(\"uv_gps\", model.cfg.model.pixel_per_meter)\n",
"for i, batch in zip(range(10), loader):\n",
" pred = data = batch_ = None \n",
" batch_ = model.transfer_batch_to_device(batch, model.device, i)\n",
" pred = model(batch_)\n",
" pred = {k:v.float() if isinstance(v, torch.HalfTensor) else v for k,v in pred.items()}\n",
" pred[\"uv_gps\"] = batch[\"uv_gps\"]\n",
" loss = model.model.loss(pred, batch_)\n",
" results = metrics(pred, batch_)\n",
" results.pop(\"xy_expectation_error\")\n",
" for k in list(results):\n",
" if \"recall\" in k:\n",
" results.pop(k)\n",
" print(f'{i} {loss[\"total\"].item():.2f}', {k: round(v.item(), 2) for k, v in results.items()})\n",
"# if results[\"xy_max_error\"] < 5:\n",
"# continue\n",
"\n",
" pred = unbatch_to_device(pred)\n",
" data = unbatch_to_device(batch)\n",
" plot_example_single(i, model, pred, data, results, plot_bev=True, out_dir=out_dir, show_gps=True)\n",
" \n",
" continue\n",
" scales_scores = pred['pixel_scales']\n",
" log_prob = torch.nn.functional.log_softmax(scales_scores, dim=-1)\n",
" scales_exp = torch.sum(log_prob.exp() * torch.arange(scales_scores.shape[-1]), -1)\n",
" total_score = torch.logsumexp(scales_scores, -1)\n",
" plot_images([log_prob.max(-1).values.exp(), scales_exp, total_score], cmaps='jet')\n",
" plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|