OrienterNet / maploc /data /dataset.py
sarlinpe's picture
Release
9665c2c
raw
history blame
10 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List
import numpy as np
import torch
import torch.utils.data as torchdata
import torchvision.transforms as tvf
from omegaconf import DictConfig, OmegaConf
from ..models.utils import deg2rad, rotmat2d
from ..osm.tiling import TileManager
from ..utils.geo import BoundaryBox
from ..utils.io import read_image
from ..utils.wrappers import Camera
from .image import pad_image, rectify_image, resize_image
from .utils import decompose_rotmat, random_flip, random_rot90
class MapLocDataset(torchdata.Dataset):
default_cfg = {
"seed": 0,
"accuracy_gps": 15,
"random": True,
"num_threads": None,
# map
"num_classes": None,
"pixel_per_meter": "???",
"crop_size_meters": "???",
"max_init_error": "???",
"max_init_error_rotation": None,
"init_from_gps": False,
"return_gps": False,
"force_camera_height": None,
# pose priors
"add_map_mask": False,
"mask_radius": None,
"mask_pad": 1,
"prior_range_rotation": None,
# image preprocessing
"target_focal_length": None,
"reduce_fov": None,
"resize_image": None,
"pad_to_square": False, # legacy
"pad_to_multiple": 32,
"rectify_pitch": True,
"augmentation": {
"rot90": False,
"flip": False,
"image": {
"apply": False,
"brightness": 0.5,
"contrast": 0.4,
"saturation": 0.4,
"hue": 0.5 / 3.14,
},
},
}
def __init__(
self,
stage: str,
cfg: DictConfig,
names: List[str],
data: Dict[str, Any],
image_dirs: Dict[str, Path],
tile_managers: Dict[str, TileManager],
image_ext: str = "",
):
self.stage = stage
self.cfg = deepcopy(cfg)
self.data = data
self.image_dirs = image_dirs
self.tile_managers = tile_managers
self.names = names
self.image_ext = image_ext
tfs = []
if stage == "train" and cfg.augmentation.image.apply:
args = OmegaConf.masked_copy(
cfg.augmentation.image, ["brightness", "contrast", "saturation", "hue"]
)
tfs.append(tvf.ColorJitter(**args))
self.tfs = tvf.Compose(tfs)
def __len__(self):
return len(self.names)
def __getitem__(self, idx):
if self.stage == "train" and self.cfg.random:
seed = None
else:
seed = [self.cfg.seed, idx]
(seed,) = np.random.SeedSequence(seed).generate_state(1)
scene, seq, name = self.names[idx]
if self.cfg.init_from_gps:
latlon_gps = self.data["gps_position"][idx][:2].clone().numpy()
xy_w_init = self.tile_managers[scene].projection.project(latlon_gps)
else:
xy_w_init = self.data["t_c2w"][idx][:2].clone().double().numpy()
if "shifts" in self.data:
yaw = self.data["roll_pitch_yaw"][idx][-1]
R_c2w = rotmat2d((90 - yaw) / 180 * np.pi).float()
error = (R_c2w @ self.data["shifts"][idx][:2]).numpy()
else:
error = np.random.RandomState(seed).uniform(-1, 1, size=2)
xy_w_init += error * self.cfg.max_init_error
bbox_tile = BoundaryBox(
xy_w_init - self.cfg.crop_size_meters,
xy_w_init + self.cfg.crop_size_meters,
)
return self.get_view(idx, scene, seq, name, seed, bbox_tile)
def get_view(self, idx, scene, seq, name, seed, bbox_tile):
data = {
"index": idx,
"name": name,
"scene": scene,
"sequence": seq,
}
cam_dict = self.data["cameras"][scene][seq][self.data["camera_id"][idx]]
cam = Camera.from_dict(cam_dict).float()
if "roll_pitch_yaw" in self.data:
roll, pitch, yaw = self.data["roll_pitch_yaw"][idx].numpy()
else:
roll, pitch, yaw = decompose_rotmat(self.data["R_c2w"][idx].numpy())
image = read_image(self.image_dirs[scene] / (name + self.image_ext))
if "plane_params" in self.data:
# transform the plane parameters from world to camera frames
plane_w = self.data["plane_params"][idx]
data["ground_plane"] = torch.cat(
[rotmat2d(deg2rad(torch.tensor(yaw))) @ plane_w[:2], plane_w[2:]]
)
if self.cfg.force_camera_height is not None:
data["camera_height"] = torch.tensor(self.cfg.force_camera_height)
elif "camera_height" in self.data:
data["camera_height"] = self.data["height"][idx].clone()
# raster extraction
canvas = self.tile_managers[scene].query(bbox_tile)
xy_w_gt = self.data["t_c2w"][idx][:2].numpy()
uv_gt = canvas.to_uv(xy_w_gt)
uv_init = canvas.to_uv(bbox_tile.center)
raster = canvas.raster # C, H, W
# Map augmentations
heading = np.deg2rad(90 - yaw) # fixme
if self.stage == "train":
if self.cfg.augmentation.rot90:
raster, uv_gt, heading = random_rot90(raster, uv_gt, heading, seed)
if self.cfg.augmentation.flip:
image, raster, uv_gt, heading = random_flip(
image, raster, uv_gt, heading, seed
)
yaw = 90 - np.rad2deg(heading) # fixme
image, valid, cam, roll, pitch = self.process_image(
image, cam, roll, pitch, seed
)
# Create the mask for prior location
if self.cfg.add_map_mask:
data["map_mask"] = torch.from_numpy(self.create_map_mask(canvas))
if self.cfg.max_init_error_rotation is not None:
if "shifts" in self.data:
error = self.data["shifts"][idx][-1]
else:
error = np.random.RandomState(seed + 1).uniform(-1, 1)
error = torch.tensor(error, dtype=torch.float)
yaw_init = yaw + error * self.cfg.max_init_error_rotation
range_ = self.cfg.prior_range_rotation or self.cfg.max_init_error_rotation
data["yaw_prior"] = torch.stack([yaw_init, torch.tensor(range_)])
if self.cfg.return_gps:
gps = self.data["gps_position"][idx][:2].numpy()
xy_gps = self.tile_managers[scene].projection.project(gps)
data["uv_gps"] = torch.from_numpy(canvas.to_uv(xy_gps)).float()
data["accuracy_gps"] = torch.tensor(
min(self.cfg.accuracy_gps, self.cfg.crop_size_meters)
)
if "chunk_index" in self.data:
data["chunk_id"] = (scene, seq, self.data["chunk_index"][idx])
return {
**data,
"image": image,
"valid": valid,
"camera": cam,
"canvas": canvas,
"map": torch.from_numpy(np.ascontiguousarray(raster)).long(),
"uv": torch.from_numpy(uv_gt).float(), # TODO: maybe rename to uv?
"uv_init": torch.from_numpy(uv_init).float(), # TODO: maybe rename to uv?
"roll_pitch_yaw": torch.tensor((roll, pitch, yaw)).float(),
"pixels_per_meter": torch.tensor(canvas.ppm).float(),
}
def process_image(self, image, cam, roll, pitch, seed):
image = (
torch.from_numpy(np.ascontiguousarray(image))
.permute(2, 0, 1)
.float()
.div_(255)
)
image, valid = rectify_image(
image, cam, roll, pitch if self.cfg.rectify_pitch else None
)
roll = 0.0
if self.cfg.rectify_pitch:
pitch = 0.0
if self.cfg.target_focal_length is not None:
# resize to a canonical focal length
factor = self.cfg.target_focal_length / cam.f.numpy()
size = (np.array(image.shape[-2:][::-1]) * factor).astype(int)
image, _, cam, valid = resize_image(image, size, camera=cam, valid=valid)
size_out = self.cfg.resize_image
if size_out is None:
# round the edges up such that they are multiple of a factor
stride = self.cfg.pad_to_multiple
size_out = (np.ceil((size / stride)) * stride).astype(int)
# crop or pad such that both edges are of the given size
image, valid, cam = pad_image(
image, size_out, cam, valid, crop_and_center=True
)
elif self.cfg.resize_image is not None:
image, _, cam, valid = resize_image(
image, self.cfg.resize_image, fn=max, camera=cam, valid=valid
)
if self.cfg.pad_to_square:
# pad such that both edges are of the given size
image, valid, cam = pad_image(image, self.cfg.resize_image, cam, valid)
if self.cfg.reduce_fov is not None:
h, w = image.shape[-2:]
f = float(cam.f[0])
fov = np.arctan(w / f / 2)
w_new = round(2 * f * np.tan(self.cfg.reduce_fov * fov))
image, valid, cam = pad_image(
image, (w_new, h), cam, valid, crop_and_center=True
)
with torch.random.fork_rng(devices=[]):
torch.manual_seed(seed)
image = self.tfs(image)
return image, valid, cam, roll, pitch
def create_map_mask(self, canvas):
map_mask = np.zeros(canvas.raster.shape[-2:], bool)
radius = self.cfg.mask_radius or self.cfg.max_init_error
mask_min, mask_max = np.round(
canvas.to_uv(canvas.bbox.center)
+ np.array([[-1], [1]]) * (radius + self.cfg.mask_pad) * canvas.ppm
).astype(int)
map_mask[mask_min[1] : mask_max[1], mask_min[0] : mask_max[0]] = True
return map_mask