Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
import logging | |
from typing import List, Tuple | |
import cv2 | |
import numpy as np | |
from opensfm import features | |
from opensfm.pygeometry import Camera, Pose, compute_camera_mapping | |
from opensfm.pymap import Shot | |
from scipy.spatial.transform import Rotation | |
logger = logging.getLogger(__name__) | |
def keyframe_selection(shots: List[Shot], min_dist: float = 4) -> List[int]: | |
camera_centers = np.stack([shot.pose.get_origin() for shot in shots], 0) | |
distances = np.linalg.norm(np.diff(camera_centers, axis=0), axis=1) | |
selected = [0] | |
cum = 0 | |
for i in range(1, len(camera_centers)): | |
cum += distances[i - 1] | |
if cum >= min_dist: | |
selected.append(i) | |
cum = 0 | |
return selected | |
def perspective_camera_from_pano(camera: Camera, size: int) -> Camera: | |
camera_new = Camera.create_perspective(0.5, 0, 0) | |
camera_new.height = camera_new.width = size | |
camera_new.id = "perspective_from_pano" | |
return camera_new | |
def scale_camera(camera: Camera, max_size: int) -> Camera: | |
height = camera.height | |
width = camera.width | |
factor = max_size / float(max(height, width)) | |
if factor >= 1: | |
return camera | |
camera.width = int(round(width * factor)) | |
camera.height = int(round(height * factor)) | |
return camera | |
class PanoramaUndistorter: | |
def __init__(self, camera_pano: Camera, camera_new: Camera): | |
w, h = camera_new.width, camera_new.height | |
self.shape = (h, w) | |
dst_y, dst_x = np.indices(self.shape).astype(np.float32) | |
dst_pixels_denormalized = np.column_stack([dst_x.ravel(), dst_y.ravel()]) | |
dst_pixels = features.normalized_image_coordinates( | |
dst_pixels_denormalized, w, h | |
) | |
self.dst_bearings = camera_new.pixel_bearing_many(dst_pixels) | |
self.camera_pano = camera_pano | |
self.camera_perspective = camera_new | |
def __call__( | |
self, image: np.ndarray, panoshot: Shot, perspectiveshot: Shot | |
) -> np.ndarray: | |
# Rotate to panorama reference frame | |
rotation = np.dot( | |
panoshot.pose.get_rotation_matrix(), | |
perspectiveshot.pose.get_rotation_matrix().T, | |
) | |
rotated_bearings = np.dot(self.dst_bearings, rotation.T) | |
# Project to panorama pixels | |
src_pixels = panoshot.camera.project_many(rotated_bearings) | |
src_pixels_denormalized = features.denormalized_image_coordinates( | |
src_pixels, image.shape[1], image.shape[0] | |
) | |
src_pixels_denormalized.shape = self.shape + (2,) | |
# Sample color | |
x = src_pixels_denormalized[..., 0].astype(np.float32) | |
y = src_pixels_denormalized[..., 1].astype(np.float32) | |
colors = cv2.remap(image, x, y, cv2.INTER_LINEAR, borderMode=cv2.BORDER_WRAP) | |
return colors | |
class CameraUndistorter: | |
def __init__(self, camera_distorted: Camera, camera_new: Camera): | |
self.maps = compute_camera_mapping( | |
camera_distorted, | |
camera_new, | |
camera_distorted.width, | |
camera_distorted.height, | |
) | |
self.camera_perspective = camera_new | |
self.camera_distorted = camera_distorted | |
def __call__(self, image: np.ndarray) -> np.ndarray: | |
assert image.shape[:2] == ( | |
self.camera_distorted.height, | |
self.camera_distorted.width, | |
) | |
undistorted = cv2.remap(image, *self.maps, cv2.INTER_LINEAR) | |
resized = cv2.resize( | |
undistorted, | |
(self.camera_perspective.width, self.camera_perspective.height), | |
interpolation=cv2.INTER_AREA, | |
) | |
return resized | |
def render_panorama( | |
shot: Shot, | |
pano: np.ndarray, | |
undistorter: PanoramaUndistorter, | |
offset: float = 0.0, | |
) -> Tuple[List[Shot], List[np.ndarray]]: | |
yaws = [0, 90, 180, 270] | |
suffixes = ["front", "left", "back", "right"] | |
images = [] | |
shots = [] | |
# To reduce aliasing, since cv2.remap does not support area samplimg, | |
# we first resize with anti-aliasing. | |
h, w = undistorter.shape | |
h, w = (w * 2, w * 4) # assuming 90deg FOV | |
pano_resized = cv2.resize(pano, (w, h), interpolation=cv2.INTER_AREA) | |
for yaw, suffix in zip(yaws, suffixes): | |
R_pano2persp = Rotation.from_euler("Y", yaw + offset, degrees=True).as_matrix() | |
name = f"{shot.id}_{suffix}" | |
shot_new = Shot( | |
name, | |
undistorter.camera_perspective, | |
Pose.compose(Pose(R_pano2persp), shot.pose), | |
) | |
shot_new.metadata = shot.metadata | |
perspective = undistorter(pano_resized, shot, shot_new) | |
images.append(perspective) | |
shots.append(shot_new) | |
return shots, images | |
def undistort_camera( | |
shot: Shot, image: np.ndarray, undistorter: CameraUndistorter | |
) -> Tuple[Shot, np.ndarray]: | |
name = f"{shot.id}_undistorted" | |
shot_out = Shot(name, undistorter.camera_perspective, shot.pose) | |
shot_out.metadata = shot.metadata | |
undistorted = undistorter(image) | |
return shot_out, undistorted | |
def undistort_shot( | |
image_raw: np.ndarray, | |
shot_orig: Shot, | |
undistorter, | |
pano_offset: float, | |
) -> Tuple[List[Shot], List[np.ndarray]]: | |
camera = shot_orig.camera | |
if image_raw.shape[:2] != (camera.height, camera.width): | |
raise ValueError( | |
shot_orig.id, image_raw.shape[:2], (camera.height, camera.width) | |
) | |
if camera.is_panorama(camera.projection_type): | |
shots, undistorted = render_panorama( | |
shot_orig, image_raw, undistorter, offset=pano_offset | |
) | |
elif camera.projection_type in ("perspective", "fisheye"): | |
shot, undistorted = undistort_camera(shot_orig, image_raw, undistorter) | |
shots, undistorted = [shot], [undistorted] | |
else: | |
raise NotImplementedError(camera.projection_type) | |
return shots, undistorted | |