Paul-Edouard Sarlin
Code formatting (#47)
b0cf684 unverified
# Copyright (c) Meta Platforms, Inc. and affiliates.
import json
import os
import shutil
import tarfile
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, Optional
import numpy as np
import pytorch_lightning as pl
import torch
import torch.utils.data as torchdata
from omegaconf import DictConfig, OmegaConf
from ... import DATASETS_PATH, logger
from ...osm.tiling import TileManager
from ..dataset import MapLocDataset
from ..sequential import chunk_sequence
from ..torch import collate, worker_init_fn
def pack_dump_dict(dump):
for per_seq in dump.values():
if "points" in per_seq:
for chunk in list(per_seq["points"]):
points = per_seq["points"].pop(chunk)
if points is not None:
per_seq["points"][chunk] = np.array(
per_seq["points"][chunk], np.float64
)
for view in per_seq["views"].values():
for k in ["R_c2w", "roll_pitch_yaw"]:
view[k] = np.array(view[k], np.float32)
for k in ["chunk_id"]:
if k in view:
view.pop(k)
if "observations" in view:
view["observations"] = np.array(view["observations"])
for camera in per_seq["cameras"].values():
for k in ["params"]:
camera[k] = np.array(camera[k], np.float32)
return dump
class MapillaryDataModule(pl.LightningDataModule):
dump_filename = "dump.json"
images_archive = "images.tar.gz"
images_dirname = "images/"
default_cfg = {
**MapLocDataset.default_cfg,
"name": "mapillary",
# paths and fetch
"data_dir": DATASETS_PATH / "MGL",
"local_dir": None,
"tiles_filename": "tiles.pkl",
"scenes": "???",
"split": None,
"loading": {
"train": "???",
"val": "${.test}",
"test": {"batch_size": 1, "num_workers": 0},
},
"filter_for": None,
"filter_by_ground_angle": None,
"min_num_points": "???",
}
def __init__(self, cfg: Dict[str, Any]):
super().__init__()
default_cfg = OmegaConf.create(self.default_cfg)
OmegaConf.set_struct(default_cfg, True) # cannot add new keys
self.cfg = OmegaConf.merge(default_cfg, cfg)
self.root = Path(self.cfg.data_dir)
self.local_dir = self.cfg.local_dir or os.environ.get("TMPDIR")
if self.local_dir is not None:
self.local_dir = Path(self.local_dir, "MGL")
if self.cfg.crop_size_meters < self.cfg.max_init_error:
raise ValueError("The ground truth location can be outside the map.")
def prepare_data(self):
for scene in self.cfg.scenes:
dump_dir = self.root / scene
assert (dump_dir / self.dump_filename).exists(), dump_dir
assert (dump_dir / self.cfg.tiles_filename).exists(), dump_dir
if self.local_dir is None:
assert (dump_dir / self.images_dirname).exists(), dump_dir
continue
# Cache the folder of images locally to speed up reading
local_dir = self.local_dir / scene
if local_dir.exists():
shutil.rmtree(local_dir)
local_dir.mkdir(exist_ok=True, parents=True)
images_archive = dump_dir / self.images_archive
logger.info("Extracting the image archive %s.", images_archive)
with tarfile.open(images_archive) as fp:
fp.extractall(local_dir)
def setup(self, stage: Optional[str] = None):
self.dumps = {}
self.tile_managers = {}
self.image_dirs = {}
names = []
for scene in self.cfg.scenes:
logger.info("Loading scene %s.", scene)
dump_dir = self.root / scene
logger.info("Loading map tiles %s.", self.cfg.tiles_filename)
self.tile_managers[scene] = TileManager.load(
dump_dir / self.cfg.tiles_filename
)
groups = self.tile_managers[scene].groups
if self.cfg.num_classes: # check consistency
if set(groups.keys()) != set(self.cfg.num_classes.keys()):
raise ValueError(
"Inconsistent groups: "
f"{groups.keys()} {self.cfg.num_classes.keys()}"
)
for k in groups:
if len(groups[k]) != self.cfg.num_classes[k]:
raise ValueError(
f"{k}: {len(groups[k])} vs {self.cfg.num_classes[k]}"
)
ppm = self.tile_managers[scene].ppm
if ppm != self.cfg.pixel_per_meter:
raise ValueError(
"The tile manager and the config/model have different ground "
f"resolutions: {ppm} vs {self.cfg.pixel_per_meter}"
)
logger.info("Loading dump json file %s.", self.dump_filename)
with (dump_dir / self.dump_filename).open("r") as fp:
self.dumps[scene] = pack_dump_dict(json.load(fp))
for seq, per_seq in self.dumps[scene].items():
for cam_id, cam_dict in per_seq["cameras"].items():
if cam_dict["model"] != "PINHOLE":
raise ValueError(
"Unsupported camera model: "
f"{cam_dict['model']} for {scene},{seq},{cam_id}"
)
self.image_dirs[scene] = (
(self.local_dir or self.root) / scene / self.images_dirname
)
assert self.image_dirs[scene].exists(), self.image_dirs[scene]
for seq, data in self.dumps[scene].items():
for name in data["views"]:
names.append((scene, seq, name))
self.parse_splits(self.cfg.split, names)
if self.cfg.filter_for is not None:
self.filter_elements()
self.pack_data()
def pack_data(self):
# We pack the data into compact tensors
# that can be shared across processes without copy.
exclude = {
"compass_angle",
"compass_accuracy",
"gps_accuracy",
"chunk_key",
"panorama_offset",
}
cameras = {
scene: {seq: per_seq["cameras"] for seq, per_seq in per_scene.items()}
for scene, per_scene in self.dumps.items()
}
points = {
scene: {
seq: {
i: torch.from_numpy(p) for i, p in per_seq.get("points", {}).items()
}
for seq, per_seq in per_scene.items()
}
for scene, per_scene in self.dumps.items()
}
self.data = {}
for stage, names in self.splits.items():
view = self.dumps[names[0][0]][names[0][1]]["views"][names[0][2]]
data = {k: [] for k in view.keys() - exclude}
for scene, seq, name in names:
for k in data:
data[k].append(self.dumps[scene][seq]["views"][name].get(k, None))
for k in data:
v = np.array(data[k])
if np.issubdtype(v.dtype, np.integer) or np.issubdtype(
v.dtype, np.floating
):
v = torch.from_numpy(v)
data[k] = v
data["cameras"] = cameras
data["points"] = points
self.data[stage] = data
self.splits[stage] = np.array(names)
def filter_elements(self):
for stage, names in self.splits.items():
names_select = []
for scene, seq, name in names:
view = self.dumps[scene][seq]["views"][name]
if self.cfg.filter_for == "ground_plane":
if not (1.0 <= view["height"] <= 3.0):
continue
planes = self.dumps[scene][seq].get("plane")
if planes is not None:
inliers = planes[str(view["chunk_id"])][-1]
if inliers < 10:
continue
if self.cfg.filter_by_ground_angle is not None:
plane = np.array(view["plane_params"])
normal = plane[:3] / np.linalg.norm(plane[:3])
angle = np.rad2deg(np.arccos(np.abs(normal[-1])))
if angle > self.cfg.filter_by_ground_angle:
continue
elif self.cfg.filter_for == "pointcloud":
if len(view["observations"]) < self.cfg.min_num_points:
continue
elif self.cfg.filter_for is not None:
raise ValueError(f"Unknown filtering: {self.cfg.filter_for}")
names_select.append((scene, seq, name))
logger.info(
"%s: Keep %d/%d images after filtering for %s.",
stage,
len(names_select),
len(names),
self.cfg.filter_for,
)
self.splits[stage] = names_select
def parse_splits(self, split_arg, names):
if split_arg is None:
self.splits = {
"train": names,
"val": names,
}
elif isinstance(split_arg, int):
names = np.random.RandomState(self.cfg.seed).permutation(names).tolist()
self.splits = {
"train": names[split_arg:],
"val": names[:split_arg],
}
elif isinstance(split_arg, DictConfig):
scenes_val = set(split_arg.val)
scenes_train = set(split_arg.train)
assert len(scenes_val - set(self.cfg.scenes)) == 0
assert len(scenes_train - set(self.cfg.scenes)) == 0
self.splits = {
"train": [n for n in names if n[0] in scenes_train],
"val": [n for n in names if n[0] in scenes_val],
}
elif isinstance(split_arg, str):
with (self.root / split_arg).open("r") as fp:
splits = json.load(fp)
splits = {
k: {loc: set(ids) for loc, ids in split.items()}
for k, split in splits.items()
}
self.splits = {}
for k, split in splits.items():
self.splits[k] = [
n
for n in names
if n[0] in split and int(n[-1].rsplit("_", 1)[0]) in split[n[0]]
]
else:
raise ValueError(split_arg)
def dataset(self, stage: str):
return MapLocDataset(
stage,
self.cfg,
self.splits[stage],
self.data[stage],
self.image_dirs,
self.tile_managers,
image_ext=".jpg",
)
def dataloader(
self,
stage: str,
shuffle: bool = False,
num_workers: int = None,
sampler: Optional[torchdata.Sampler] = None,
):
dataset = self.dataset(stage)
cfg = self.cfg["loading"][stage]
num_workers = cfg["num_workers"] if num_workers is None else num_workers
loader = torchdata.DataLoader(
dataset,
batch_size=cfg["batch_size"],
num_workers=num_workers,
shuffle=shuffle or (stage == "train"),
pin_memory=True,
persistent_workers=num_workers > 0,
worker_init_fn=worker_init_fn,
collate_fn=collate,
sampler=sampler,
)
return loader
def train_dataloader(self, **kwargs):
return self.dataloader("train", **kwargs)
def val_dataloader(self, **kwargs):
return self.dataloader("val", **kwargs)
def test_dataloader(self, **kwargs):
return self.dataloader("test", **kwargs)
def sequence_dataset(self, stage: str, **kwargs):
keys = self.splits[stage]
seq2indices = defaultdict(list)
for index, (_, seq, _) in enumerate(keys):
seq2indices[seq].append(index)
# chunk the sequences to the required length
chunk2indices = {}
for seq, indices in seq2indices.items():
chunks = chunk_sequence(self.data[stage], indices, **kwargs)
for i, sub_indices in enumerate(chunks):
chunk2indices[seq, i] = sub_indices
# store the index of each chunk in its sequence
chunk_indices = torch.full((len(keys),), -1)
for (_, chunk_index), idx in chunk2indices.items():
chunk_indices[idx] = chunk_index
self.data[stage]["chunk_index"] = chunk_indices
dataset = self.dataset(stage)
return dataset, chunk2indices
def sequence_dataloader(self, stage: str, shuffle: bool = False, **kwargs):
dataset, chunk2idx = self.sequence_dataset(stage, **kwargs)
chunk_keys = sorted(chunk2idx)
if shuffle:
perm = torch.randperm(len(chunk_keys))
chunk_keys = [chunk_keys[i] for i in perm]
key_indices = [i for key in chunk_keys for i in chunk2idx[key]]
num_workers = self.cfg["loading"][stage]["num_workers"]
loader = torchdata.DataLoader(
dataset,
batch_size=None,
sampler=key_indices,
num_workers=num_workers,
shuffle=False,
pin_memory=True,
persistent_workers=num_workers > 0,
worker_init_fn=worker_init_fn,
collate_fn=collate,
)
return loader, chunk_keys, chunk2idx