Spaces:
Running
Running
Use the PerspectiveFields inference model
Browse files- demo.ipynb +0 -0
- maploc/demo.py +77 -85
- requirements/demo.txt +1 -1
demo.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
maploc/demo.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
|
3 |
-
from typing import Optional, Tuple
|
4 |
|
5 |
import numpy as np
|
6 |
import torch
|
|
|
7 |
|
8 |
from . import logger
|
9 |
from .data.image import pad_image, rectify_image, resize_image
|
@@ -23,61 +24,51 @@ try:
|
|
23 |
except ImportError:
|
24 |
geolocator = None
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
model="SIMPLE_PINHOLE",
|
58 |
-
width=w,
|
59 |
-
height=h,
|
60 |
-
params=[f, w / 2 + 0.5, h / 2 + 0.5],
|
61 |
)
|
62 |
-
|
63 |
|
64 |
|
65 |
-
def
|
66 |
-
|
67 |
prior_latlon: Optional[Tuple[float, float]] = None,
|
68 |
prior_address: Optional[str] = None,
|
69 |
-
|
70 |
-
tile_size_meters: int = 64,
|
71 |
-
):
|
72 |
-
image = read_image(image_path)
|
73 |
-
with open(image_path, "rb") as fid:
|
74 |
-
exif = EXIF(fid, lambda: image.shape[:2])
|
75 |
-
|
76 |
latlon = None
|
77 |
if prior_latlon is not None:
|
78 |
latlon = prior_latlon
|
79 |
logger.info("Using prior latlon %s.", prior_latlon)
|
80 |
-
|
81 |
if geolocator is None:
|
82 |
raise ValueError("geocoding unavailable, install geopy.")
|
83 |
location = geolocator.geocode(prior_address)
|
@@ -93,32 +84,11 @@ def read_input_image(
|
|
93 |
latlon = (geo["latitude"], geo["longitude"], alt)
|
94 |
logger.info("Using prior location from EXIF.")
|
95 |
else:
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
)
|
102 |
-
latlon = np.array(latlon)
|
103 |
-
|
104 |
-
roll_pitch = None
|
105 |
-
if calibrator is not None:
|
106 |
-
roll_pitch, fov = image_calibration(image_path)
|
107 |
-
else:
|
108 |
-
logger.info("Could not call PerspectiveFields, maybe install gradio_client?")
|
109 |
-
if roll_pitch is not None:
|
110 |
-
logger.info("Using (roll, pitch) %s.", roll_pitch)
|
111 |
-
|
112 |
-
camera = camera_from_exif(exif, fov)
|
113 |
-
if camera is None:
|
114 |
-
raise ValueError(
|
115 |
-
"No camera intrinsics found in the EXIF, provide an FoV guess."
|
116 |
-
)
|
117 |
-
|
118 |
-
proj = Projection(*latlon)
|
119 |
-
center = proj.project(latlon)
|
120 |
-
bbox = BoundaryBox(center, center) + tile_size_meters
|
121 |
-
return image, camera, roll_pitch, proj, bbox, latlon
|
122 |
|
123 |
|
124 |
class Demo:
|
@@ -141,19 +111,41 @@ class Demo:
|
|
141 |
model.load_state_dict(state, strict=True)
|
142 |
if device is None:
|
143 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
144 |
-
model = model.to(device)
|
|
|
|
|
145 |
|
146 |
-
self.model = model
|
147 |
self.config = config
|
148 |
self.device = device
|
149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
def prepare_data(
|
151 |
self,
|
152 |
image: np.ndarray,
|
153 |
camera: Camera,
|
154 |
canvas: Canvas,
|
155 |
-
|
156 |
-
):
|
157 |
assert image.shape[:2][::-1] == tuple(camera.size.tolist())
|
158 |
target_focal_length = self.config.data.resize_image / 2
|
159 |
factor = target_focal_length / camera.f
|
@@ -161,8 +153,8 @@ class Demo:
|
|
161 |
|
162 |
image = torch.from_numpy(image).permute(2, 0, 1).float().div_(255)
|
163 |
valid = None
|
164 |
-
if
|
165 |
-
roll, pitch =
|
166 |
image, valid = rectify_image(
|
167 |
image,
|
168 |
camera.float(),
|
@@ -180,12 +172,12 @@ class Demo:
|
|
180 |
image, size.tolist(), camera, crop_and_center=True
|
181 |
)
|
182 |
|
183 |
-
return
|
184 |
-
image
|
185 |
-
map
|
186 |
-
camera
|
187 |
-
valid
|
188 |
-
|
189 |
|
190 |
def localize(self, image: np.ndarray, camera: Camera, canvas: Canvas, **kwargs):
|
191 |
data = self.prepare_data(image, camera, canvas, **kwargs)
|
|
|
1 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
|
3 |
+
from typing import Dict, Optional, Tuple
|
4 |
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
+
from perspective2d import PerspectiveFields
|
8 |
|
9 |
from . import logger
|
10 |
from .data.image import pad_image, rectify_image, resize_image
|
|
|
24 |
except ImportError:
|
25 |
geolocator = None
|
26 |
|
27 |
+
|
28 |
+
class ImageCalibrator(PerspectiveFields):
|
29 |
+
def __init__(self, version: str = "Paramnet-360Cities-edina-centered"):
|
30 |
+
super().__init__(version)
|
31 |
+
self.eval()
|
32 |
+
|
33 |
+
def run(
|
34 |
+
self,
|
35 |
+
image_rgb: np.ndarray,
|
36 |
+
focal_length: Optional[float] = None,
|
37 |
+
exif: Optional[EXIF] = None,
|
38 |
+
) -> Tuple[Tuple[float, float], Camera]:
|
39 |
+
h, w, *_ = image_rgb.shape
|
40 |
+
if focal_length is None and exif is not None:
|
41 |
+
_, focal_ratio = exif.extract_focal()
|
42 |
+
if focal_ratio != 0:
|
43 |
+
focal_length = focal_ratio * max(h, w)
|
44 |
+
|
45 |
+
calib = self.inference(img_bgr=image_rgb[..., ::-1])
|
46 |
+
roll_pitch = (calib["pred_roll"].item(), calib["pred_pitch"].item())
|
47 |
+
if focal_length is None:
|
48 |
+
vfov = calib["pred_vfov"].item()
|
49 |
+
focal_length = h / 2 / np.tan(np.deg2rad(vfov) / 2)
|
50 |
+
|
51 |
+
camera = Camera.from_dict(
|
52 |
+
{
|
53 |
+
"model": "SIMPLE_PINHOLE",
|
54 |
+
"width": w,
|
55 |
+
"height": h,
|
56 |
+
"params": [focal_length, w / 2 + 0.5, h / 2 + 0.5],
|
57 |
+
}
|
|
|
|
|
|
|
|
|
58 |
)
|
59 |
+
return roll_pitch, camera
|
60 |
|
61 |
|
62 |
+
def parse_location_prior(
|
63 |
+
exif: EXIF,
|
64 |
prior_latlon: Optional[Tuple[float, float]] = None,
|
65 |
prior_address: Optional[str] = None,
|
66 |
+
) -> np.ndarray:
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
latlon = None
|
68 |
if prior_latlon is not None:
|
69 |
latlon = prior_latlon
|
70 |
logger.info("Using prior latlon %s.", prior_latlon)
|
71 |
+
elif prior_address is not None:
|
72 |
if geolocator is None:
|
73 |
raise ValueError("geocoding unavailable, install geopy.")
|
74 |
location = geolocator.geocode(prior_address)
|
|
|
84 |
latlon = (geo["latitude"], geo["longitude"], alt)
|
85 |
logger.info("Using prior location from EXIF.")
|
86 |
else:
|
87 |
+
raise ValueError(
|
88 |
+
"No location prior given or found in the image EXIF metadata: "
|
89 |
+
"maybe provide the name of a street, building or neighborhood?"
|
90 |
+
)
|
91 |
+
return np.array(latlon)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
class Demo:
|
|
|
111 |
model.load_state_dict(state, strict=True)
|
112 |
if device is None:
|
113 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
114 |
+
self.model = model.to(device)
|
115 |
+
|
116 |
+
self.calibrator = ImageCalibrator().to(device)
|
117 |
|
|
|
118 |
self.config = config
|
119 |
self.device = device
|
120 |
|
121 |
+
def read_input_image(
|
122 |
+
self,
|
123 |
+
image_path: str,
|
124 |
+
prior_latlon: Optional[Tuple[float, float]] = None,
|
125 |
+
prior_address: Optional[str] = None,
|
126 |
+
focal_length: Optional[float] = None,
|
127 |
+
tile_size_meters: int = 64,
|
128 |
+
) -> Tuple[np.ndarray, Camera, Tuple[str, str], Projection, BoundaryBox]:
|
129 |
+
image = read_image(image_path)
|
130 |
+
with open(image_path, "rb") as fid:
|
131 |
+
exif = EXIF(fid, lambda: image.shape[:2])
|
132 |
+
|
133 |
+
gravity, camera = self.calibrator.run(image, focal_length, exif)
|
134 |
+
logger.info("Using (roll, pitch) %s.", gravity)
|
135 |
+
|
136 |
+
latlon = parse_location_prior(exif, prior_latlon, prior_address)
|
137 |
+
proj = Projection(*latlon)
|
138 |
+
center = proj.project(latlon)
|
139 |
+
bbox = BoundaryBox(center, center) + tile_size_meters
|
140 |
+
return image, camera, gravity, proj, bbox
|
141 |
+
|
142 |
def prepare_data(
|
143 |
self,
|
144 |
image: np.ndarray,
|
145 |
camera: Camera,
|
146 |
canvas: Canvas,
|
147 |
+
gravity: Optional[Tuple[float]] = None,
|
148 |
+
) -> Dict[str, torch.Tensor]:
|
149 |
assert image.shape[:2][::-1] == tuple(camera.size.tolist())
|
150 |
target_focal_length = self.config.data.resize_image / 2
|
151 |
factor = target_focal_length / camera.f
|
|
|
153 |
|
154 |
image = torch.from_numpy(image).permute(2, 0, 1).float().div_(255)
|
155 |
valid = None
|
156 |
+
if gravity is not None:
|
157 |
+
roll, pitch = gravity
|
158 |
image, valid = rectify_image(
|
159 |
image,
|
160 |
camera.float(),
|
|
|
172 |
image, size.tolist(), camera, crop_and_center=True
|
173 |
)
|
174 |
|
175 |
+
return {
|
176 |
+
"image": image,
|
177 |
+
"map": torch.from_numpy(canvas.raster).long(),
|
178 |
+
"camera": camera.float(),
|
179 |
+
"valid": valid,
|
180 |
+
}
|
181 |
|
182 |
def localize(self, image: np.ndarray, camera: Camera, canvas: Canvas, **kwargs):
|
183 |
data = self.prepare_data(image, camera, canvas, **kwargs)
|
requirements/demo.txt
CHANGED
@@ -16,5 +16,5 @@ rtree
|
|
16 |
scikit-learn
|
17 |
geopy
|
18 |
exifread
|
19 |
-
gradio_client
|
20 |
urllib3>=2
|
|
|
|
16 |
scikit-learn
|
17 |
geopy
|
18 |
exifread
|
|
|
19 |
urllib3>=2
|
20 |
+
perspective2d @ git+https://github.com/jinlinyi/PerspectiveFields.git
|