# Copyright (c) Meta Platforms, Inc. and affiliates. import numpy as np import torch def chunk_sequence( data, indices, *, names=None, max_length=100, min_length=1, max_delay_s=None, max_inter_dist=None, max_total_dist=None, ): sort_array = data.get("capture_time", data.get("index")) if sort_array is None: sort_array = indices if names is None else names indices = sorted(indices, key=lambda i: sort_array[i].tolist()) centers = torch.stack([data["t_c2w"][i][:2] for i in indices]).numpy() dists = np.linalg.norm(np.diff(centers, axis=0), axis=-1) if "capture_time" in data: times = torch.stack([data["capture_time"][i] for i in indices]) times = times.double() / 1e3 # ms to s delays = np.diff(times, axis=0) else: delays = np.zeros_like(dists) chunks = [[indices[0]]] dist_total = 0 for dist, delay, idx in zip(dists, delays, indices[1:]): dist_total += dist if ( (max_inter_dist is not None and dist > max_inter_dist) or (max_total_dist is not None and dist_total > max_total_dist) or (max_delay_s is not None and delay > max_delay_s) or len(chunks[-1]) >= max_length ): chunks.append([]) dist_total = 0 chunks[-1].append(idx) chunks = list(filter(lambda c: len(c) >= min_length, chunks)) chunks = sorted(chunks, key=len, reverse=True) return chunks def unpack_batches(batches): images = [b["image"].permute(1, 2, 0) for b in batches] canvas = [b["canvas"] for b in batches] rasters = [b["map"] for b in batches] yaws = torch.stack([b["roll_pitch_yaw"][-1] for b in batches]) uv_gt = torch.stack([b["uv"] for b in batches]) xy_gt = torch.stack( [canv.to_xy(uv.cpu().double()) for uv, canv in zip(uv_gt, canvas)] ) ret = [images, canvas, rasters, yaws, uv_gt, xy_gt.to(uv_gt)] if "uv_gps" in batches[0]: xy_gps = torch.stack( [c.to_xy(b["uv_gps"].cpu().double()) for b, c in zip(batches, canvas)] ) ret.append(xy_gps.to(uv_gt)) return ret