# Copyright (c) Meta Platforms, Inc. and affiliates. import json import os import shutil import tarfile from collections import defaultdict from pathlib import Path from typing import Any, Dict, Optional import numpy as np import pytorch_lightning as pl import torch import torch.utils.data as torchdata from omegaconf import DictConfig, OmegaConf from ... import DATASETS_PATH, logger from ...osm.tiling import TileManager from ..dataset import MapLocDataset from ..sequential import chunk_sequence from ..torch import collate, worker_init_fn def pack_dump_dict(dump): for per_seq in dump.values(): if "points" in per_seq: for chunk in list(per_seq["points"]): points = per_seq["points"].pop(chunk) if points is not None: per_seq["points"][chunk] = np.array( per_seq["points"][chunk], np.float64 ) for view in per_seq["views"].values(): for k in ["R_c2w", "roll_pitch_yaw"]: view[k] = np.array(view[k], np.float32) for k in ["chunk_id"]: if k in view: view.pop(k) if "observations" in view: view["observations"] = np.array(view["observations"]) for camera in per_seq["cameras"].values(): for k in ["params"]: camera[k] = np.array(camera[k], np.float32) return dump class MapillaryDataModule(pl.LightningDataModule): dump_filename = "dump.json" images_archive = "images.tar.gz" images_dirname = "images/" default_cfg = { **MapLocDataset.default_cfg, "name": "mapillary", # paths and fetch "data_dir": DATASETS_PATH / "MGL", "local_dir": None, "tiles_filename": "tiles.pkl", "scenes": "???", "split": None, "loading": { "train": "???", "val": "${.test}", "test": {"batch_size": 1, "num_workers": 0}, }, "filter_for": None, "filter_by_ground_angle": None, "min_num_points": "???", } def __init__(self, cfg: Dict[str, Any]): super().__init__() default_cfg = OmegaConf.create(self.default_cfg) OmegaConf.set_struct(default_cfg, True) # cannot add new keys self.cfg = OmegaConf.merge(default_cfg, cfg) self.root = Path(self.cfg.data_dir) self.local_dir = self.cfg.local_dir or os.environ.get("TMPDIR") if self.local_dir is not None: self.local_dir = Path(self.local_dir, "MGL") if self.cfg.crop_size_meters < self.cfg.max_init_error: raise ValueError("The ground truth location can be outside the map.") def prepare_data(self): for scene in self.cfg.scenes: dump_dir = self.root / scene assert (dump_dir / self.dump_filename).exists(), dump_dir assert (dump_dir / self.cfg.tiles_filename).exists(), dump_dir if self.local_dir is None: assert (dump_dir / self.images_dirname).exists(), dump_dir continue # Cache the folder of images locally to speed up reading local_dir = self.local_dir / scene if local_dir.exists(): shutil.rmtree(local_dir) local_dir.mkdir(exist_ok=True, parents=True) images_archive = dump_dir / self.images_archive logger.info("Extracting the image archive %s.", images_archive) with tarfile.open(images_archive) as fp: fp.extractall(local_dir) def setup(self, stage: Optional[str] = None): self.dumps = {} self.tile_managers = {} self.image_dirs = {} names = [] for scene in self.cfg.scenes: logger.info("Loading scene %s.", scene) dump_dir = self.root / scene logger.info("Loading map tiles %s.", self.cfg.tiles_filename) self.tile_managers[scene] = TileManager.load( dump_dir / self.cfg.tiles_filename ) groups = self.tile_managers[scene].groups if self.cfg.num_classes: # check consistency if set(groups.keys()) != set(self.cfg.num_classes.keys()): raise ValueError( "Inconsistent groups: " f"{groups.keys()} {self.cfg.num_classes.keys()}" ) for k in groups: if len(groups[k]) != self.cfg.num_classes[k]: raise ValueError( f"{k}: {len(groups[k])} vs {self.cfg.num_classes[k]}" ) ppm = self.tile_managers[scene].ppm if ppm != self.cfg.pixel_per_meter: raise ValueError( "The tile manager and the config/model have different ground " f"resolutions: {ppm} vs {self.cfg.pixel_per_meter}" ) logger.info("Loading dump json file %s.", self.dump_filename) with (dump_dir / self.dump_filename).open("r") as fp: self.dumps[scene] = pack_dump_dict(json.load(fp)) for seq, per_seq in self.dumps[scene].items(): for cam_id, cam_dict in per_seq["cameras"].items(): if cam_dict["model"] != "PINHOLE": raise ValueError( "Unsupported camera model: " f"{cam_dict['model']} for {scene},{seq},{cam_id}" ) self.image_dirs[scene] = ( (self.local_dir or self.root) / scene / self.images_dirname ) assert self.image_dirs[scene].exists(), self.image_dirs[scene] for seq, data in self.dumps[scene].items(): for name in data["views"]: names.append((scene, seq, name)) self.parse_splits(self.cfg.split, names) if self.cfg.filter_for is not None: self.filter_elements() self.pack_data() def pack_data(self): # We pack the data into compact tensors # that can be shared across processes without copy. exclude = { "compass_angle", "compass_accuracy", "gps_accuracy", "chunk_key", "panorama_offset", } cameras = { scene: {seq: per_seq["cameras"] for seq, per_seq in per_scene.items()} for scene, per_scene in self.dumps.items() } points = { scene: { seq: { i: torch.from_numpy(p) for i, p in per_seq.get("points", {}).items() } for seq, per_seq in per_scene.items() } for scene, per_scene in self.dumps.items() } self.data = {} for stage, names in self.splits.items(): view = self.dumps[names[0][0]][names[0][1]]["views"][names[0][2]] data = {k: [] for k in view.keys() - exclude} for scene, seq, name in names: for k in data: data[k].append(self.dumps[scene][seq]["views"][name].get(k, None)) for k in data: v = np.array(data[k]) if np.issubdtype(v.dtype, np.integer) or np.issubdtype( v.dtype, np.floating ): v = torch.from_numpy(v) data[k] = v data["cameras"] = cameras data["points"] = points self.data[stage] = data self.splits[stage] = np.array(names) def filter_elements(self): for stage, names in self.splits.items(): names_select = [] for scene, seq, name in names: view = self.dumps[scene][seq]["views"][name] if self.cfg.filter_for == "ground_plane": if not (1.0 <= view["height"] <= 3.0): continue planes = self.dumps[scene][seq].get("plane") if planes is not None: inliers = planes[str(view["chunk_id"])][-1] if inliers < 10: continue if self.cfg.filter_by_ground_angle is not None: plane = np.array(view["plane_params"]) normal = plane[:3] / np.linalg.norm(plane[:3]) angle = np.rad2deg(np.arccos(np.abs(normal[-1]))) if angle > self.cfg.filter_by_ground_angle: continue elif self.cfg.filter_for == "pointcloud": if len(view["observations"]) < self.cfg.min_num_points: continue elif self.cfg.filter_for is not None: raise ValueError(f"Unknown filtering: {self.cfg.filter_for}") names_select.append((scene, seq, name)) logger.info( "%s: Keep %d/%d images after filtering for %s.", stage, len(names_select), len(names), self.cfg.filter_for, ) self.splits[stage] = names_select def parse_splits(self, split_arg, names): if split_arg is None: self.splits = { "train": names, "val": names, } elif isinstance(split_arg, int): names = np.random.RandomState(self.cfg.seed).permutation(names).tolist() self.splits = { "train": names[split_arg:], "val": names[:split_arg], } elif isinstance(split_arg, DictConfig): scenes_val = set(split_arg.val) scenes_train = set(split_arg.train) assert len(scenes_val - set(self.cfg.scenes)) == 0 assert len(scenes_train - set(self.cfg.scenes)) == 0 self.splits = { "train": [n for n in names if n[0] in scenes_train], "val": [n for n in names if n[0] in scenes_val], } elif isinstance(split_arg, str): with (self.root / split_arg).open("r") as fp: splits = json.load(fp) splits = { k: {loc: set(ids) for loc, ids in split.items()} for k, split in splits.items() } self.splits = {} for k, split in splits.items(): self.splits[k] = [ n for n in names if n[0] in split and int(n[-1].rsplit("_", 1)[0]) in split[n[0]] ] else: raise ValueError(split_arg) def dataset(self, stage: str): return MapLocDataset( stage, self.cfg, self.splits[stage], self.data[stage], self.image_dirs, self.tile_managers, image_ext=".jpg", ) def dataloader( self, stage: str, shuffle: bool = False, num_workers: int = None, sampler: Optional[torchdata.Sampler] = None, ): dataset = self.dataset(stage) cfg = self.cfg["loading"][stage] num_workers = cfg["num_workers"] if num_workers is None else num_workers loader = torchdata.DataLoader( dataset, batch_size=cfg["batch_size"], num_workers=num_workers, shuffle=shuffle or (stage == "train"), pin_memory=True, persistent_workers=num_workers > 0, worker_init_fn=worker_init_fn, collate_fn=collate, sampler=sampler, ) return loader def train_dataloader(self, **kwargs): return self.dataloader("train", **kwargs) def val_dataloader(self, **kwargs): return self.dataloader("val", **kwargs) def test_dataloader(self, **kwargs): return self.dataloader("test", **kwargs) def sequence_dataset(self, stage: str, **kwargs): keys = self.splits[stage] seq2indices = defaultdict(list) for index, (_, seq, _) in enumerate(keys): seq2indices[seq].append(index) # chunk the sequences to the required length chunk2indices = {} for seq, indices in seq2indices.items(): chunks = chunk_sequence(self.data[stage], indices, **kwargs) for i, sub_indices in enumerate(chunks): chunk2indices[seq, i] = sub_indices # store the index of each chunk in its sequence chunk_indices = torch.full((len(keys),), -1) for (_, chunk_index), idx in chunk2indices.items(): chunk_indices[idx] = chunk_index self.data[stage]["chunk_index"] = chunk_indices dataset = self.dataset(stage) return dataset, chunk2indices def sequence_dataloader(self, stage: str, shuffle: bool = False, **kwargs): dataset, chunk2idx = self.sequence_dataset(stage, **kwargs) chunk_keys = sorted(chunk2idx) if shuffle: perm = torch.randperm(len(chunk_keys)) chunk_keys = [chunk_keys[i] for i in perm] key_indices = [i for key in chunk_keys for i in chunk2idx[key]] num_workers = self.cfg["loading"][stage]["num_workers"] loader = torchdata.DataLoader( dataset, batch_size=None, sampler=key_indices, num_workers=num_workers, shuffle=False, pin_memory=True, persistent_workers=num_workers > 0, worker_init_fn=worker_init_fn, collate_fn=collate, ) return loader, chunk_keys, chunk2idx