File size: 1,633 Bytes
267f626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "b09afbb1-cb88-4ba3-95c8-eba0b484456e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Hello Argilla\n"
     ]
    }
   ],
   "source": [
    "import argilla as rg\n",
    "from datasets import load_dataset\n",
    "\n",
    "# You can find your Space URL behind the Embed this space button\n",
    "# Change it\n",
    "rg.init(\n",
    "    api_url=\"https://saroj502-uat.hf.space\", \n",
    "    api_key=\"12345678\"\n",
    ")\n",
    "\n",
    "banking_ds = load_dataset(\"argilla/banking_sentiment_setfit\", split=\"train\")\n",
    "\n",
    "# Argilla expects labels in the annotation column\n",
    "banking_ds = banking_ds.rename_column(\"label\", \"annotation\")\n",
    "\n",
    "# Build argilla dataset from datasets\n",
    "argilla_ds = rg.read_datasets(banking_ds, task=\"TextClassification\")\n",
    "\n",
    "rg.log(argilla_ds, \"banking_sentiment\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9226f05b-1a03-45b8-af4d-2fc031514bc3",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.17"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}