saronium commited on
Commit
04813c5
·
verified ·
1 Parent(s): f5f3175

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -44,7 +44,8 @@ vgg16 = models.vgg16(pretrained=True).features
44
  def preprocess_single_audio_vgg16(audio_data, sr, vgg16_model, pca_instance):
45
  # Your existing preprocessing code goes here
46
  y= audio_data
47
- sr = 22050# Load audio
 
48
  mel_spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128) # Compute Mel spectrogram
49
  log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) # Apply log transformation
50
  norm_mel_spec = (log_mel_spec - np.mean(log_mel_spec)) / np.std(log_mel_spec) # Normalize
@@ -80,7 +81,7 @@ def predict_language(audio_input):
80
  # Load VGG16 model
81
  if isinstance(audio_input, str):
82
  # Load the audio file
83
- audio, sr = librosa.load(audio_input, sr=None)
84
  else:
85
  # Get the sample rate and convert the audio data to float
86
  sr, audio = audio_input
 
44
  def preprocess_single_audio_vgg16(audio_data, sr, vgg16_model, pca_instance):
45
  # Your existing preprocessing code goes here
46
  y= audio_data
47
+ sr=sr
48
+ # Load audio
49
  mel_spec = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128) # Compute Mel spectrogram
50
  log_mel_spec = librosa.power_to_db(mel_spec, ref=np.max) # Apply log transformation
51
  norm_mel_spec = (log_mel_spec - np.mean(log_mel_spec)) / np.std(log_mel_spec) # Normalize
 
81
  # Load VGG16 model
82
  if isinstance(audio_input, str):
83
  # Load the audio file
84
+ audio, sr = librosa.load(audio_input, sr=22050)
85
  else:
86
  # Get the sample rate and convert the audio data to float
87
  sr, audio = audio_input