Spaces:
Running
Running
File size: 3,307 Bytes
e13d732 df84cff e13d732 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
import argparse
import pathlib
import tqdm
from torch.utils.data import Dataset, DataLoader
import torchaudio
from score import Score
import torch
def get_arg():
parser = argparse.ArgumentParser()
parser.add_argument("--bs", required=False, default=None, type=int)
parser.add_argument("--mode", required=True, choices=["predict_file", "predict_dir"], type=str)
parser.add_argument("--ckpt_path", required=False, default="epoch=3-step=7459.ckpt", type=pathlib.Path)
parser.add_argument("--inp_dir", required=False, default=None, type=pathlib.Path)
parser.add_argument("--inp_path", required=False, default=None, type=pathlib.Path)
parser.add_argument("--out_path", required=True, type=pathlib.Path)
parser.add_argument("--num_workers", required=False, default=0, type=int)
return parser.parse_args()
class Dataset(Dataset):
def __init__(self, dir_path: pathlib.Path):
self.wavlist = list(dir_path.glob("*.wav"))
_, self.sr = torchaudio.load(self.wavlist[0])
def __len__(self):
return len(self.wavlist)
def __getitem__(self, idx):
fname = self.wavlist[idx]
wav, _ = torchaudio.load(fname)
sample = {
"wav": wav}
return sample
def collate_fn(self, batch):
max_len = max([x["wav"].shape[1] for x in batch])
out = []
# Performing repeat padding
for t in batch:
wav = t["wav"]
amount_to_pad = max_len - wav.shape[1]
padding_tensor = wav.repeat(1,1+amount_to_pad//wav.size(1))
out.append(torch.cat((wav,padding_tensor[:,:amount_to_pad]),dim=1))
return torch.stack(out, dim=0)
def main():
args = get_arg()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if args.mode == "predict_file":
assert args.inp_path is not None, "inp_path is required when mode is predict_file."
assert args.inp_dir is None, "inp_dir should be None."
assert args.inp_path.exists()
assert args.inp_path.is_file()
wav, sr = torchaudio.load(args.inp_path)
scorer = Score(ckpt_path=args.ckpt_path, input_sample_rate=sr, device=device)
score = scorer.score(wav.to(device))
with open(args.out_path, "w") as fw:
fw.write(str(score[0]))
else:
assert args.inp_dir is not None, "inp_dir is required when mode is predict_dir."
assert args.bs is not None, "bs is required when mode is predict_dir."
assert args.inp_path is None, "inp_path should be None."
assert args.inp_dir.exists()
assert args.inp_dir.is_dir()
dataset = Dataset(dir_path=args.inp_dir)
loader = DataLoader(
dataset,
batch_size=args.bs,
collate_fn=dataset.collate_fn,
shuffle=True,
num_workers=args.num_workers)
sr = dataset.sr
scorer = Score(ckpt_path=args.ckpt_path, input_sample_rate=sr, device=device)
with open(args.out_path, 'w'):
pass
for batch in tqdm.tqdm(loader):
scores = scorer.score(batch.to(device))
with open(args.out_path, 'a') as fw:
for s in scores:
fw.write(str(s) + "\n")
if __name__ == '__main__':
main() |