File size: 7,975 Bytes
6b9d2e8
 
 
e5f444f
 
 
7b96044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f444f
 
 
 
 
7b96044
e5f444f
 
 
6b9d2e8
7b96044
e5f444f
 
6b9d2e8
 
7b96044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b9d2e8
 
 
 
 
 
 
 
 
e5f444f
7b96044
 
 
 
 
e5f444f
6b9d2e8
 
 
 
7b96044
 
 
 
6b9d2e8
 
7b96044
 
 
 
6b9d2e8
 
 
e5f444f
6b9d2e8
 
e5f444f
6b9d2e8
 
e5f444f
6b9d2e8
e5f444f
6b9d2e8
 
 
 
 
 
 
cb47347
 
 
6b9d2e8
e5f444f
cb47347
 
 
e5f444f
6b9d2e8
 
7b96044
6b9d2e8
 
e5f444f
 
 
 
 
 
 
 
7b96044
 
e5f444f
 
 
7b96044
6b9d2e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5f444f
 
7b96044
 
 
 
 
 
 
 
 
 
e5f444f
 
 
 
7b96044
 
 
6b9d2e8
 
 
 
e5f444f
7b96044
6b9d2e8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import gradio as gr
import requests

import skills
from skills.common import config, vehicle
from skills.routing import calculate_route
import ollama

### LLM Stuff ###
from langchain_community.llms import Ollama
from langchain.tools.base import StructuredTool

from skills import (
    get_weather,
    find_route,
    get_forecast,
    vehicle_status as vehicle_status_fn,
    search_points_of_interests,
    search_along_route_w_coordinates,
    do_anything_else,
    date_time_info
)
from skills import extract_func_args


global_context = {
    "vehicle": vehicle,
    "query": "How is the weather?",
    "route_points": [],
}


MODEL_FUNC = "nexusraven"
MODEL_GENERAL = "llama3:instruct"

RAVEN_PROMPT_FUNC = """You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on."

{raven_tools}

{history}

User Query: Question: {input}<human_end>
"""

def get_prompt(template, input, history, tools):
    # "vehicle_status": vehicle_status_fn()[0]
    kwargs = {"history": history, "input": input}
    prompt = "<human>:\n"
    for tool in tools:
        func_signature, func_docstring = tool.description.split(" - ", 1)
        prompt += f'Function:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
    kwargs["raven_tools"] = prompt

    if history:
        kwargs["history"] = f"Previous conversation history:{history}\n"

    return template.format(**kwargs).replace("{{", "{").replace("}}", "}")

def use_tool(func_name, kwargs, tools):
    for tool in tools:
        if tool.name == func_name:
            return tool.invoke(input=kwargs)
    return None

tools = [
    StructuredTool.from_function(get_weather),
    StructuredTool.from_function(find_route),
    # StructuredTool.from_function(vehicle_status),
    StructuredTool.from_function(search_points_of_interests),
    StructuredTool.from_function(search_along_route_w_coordinates),
    StructuredTool.from_function(date_time_info),
    StructuredTool.from_function(do_anything_else),
]
# llm = Ollama(model="nexusraven", stop=["\nReflection:", "\nThought:"], keep_alive=60*10)


# Generate options for hours (00-23)
hour_options = [f"{i:02d}:00" for i in range(24)]


def set_time(time_picker):
    vehicle.time = time_picker
    return vehicle.model_dump_json()


def get_vehicle_status(state):
    return state.value["vehicle"].model_dump_json()


def run_generic_model(query):
    print(f"Running the generic model with query: {query}")
    data = {
        "prompt": query,
        "model": MODEL_GENERAL,
        "options": {
            # "temperature": 0.1,
            # "stop":["\nReflection:", "\nThought:"]
        }
    }
    out = ollama.generate(**data)
    return out["response"]


def run_model(query):
    print("Query: ", query)
    global_context["query"] = query
    global_context["prompt"] = get_prompt(RAVEN_PROMPT_FUNC, query, "", tools)
    print("Prompt: ", global_context["prompt"])
    data = {
        "prompt": global_context["prompt"],
        # "streaming": False,
        "model": "nexusraven",
        # "model": "smangrul/llama-3-8b-instruct-function-calling",
        "raw": True,
        "options": {
            "temperature": 0.5,
            "stop":["\nReflection:", "\nThought:"]
        }
    }
    out = ollama.generate(**data)
    llm_response = out["response"]
    if "Call: " in llm_response:
        func_name, kwargs = extract_func_args(llm_response)
        print(f"Function: {func_name}, Args: {kwargs}")
        if func_name == "do_anything_else":
            return run_generic_model(query)
    
        return use_tool(func_name, kwargs, tools)
    return out["response"]


# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
# in "Insecure origins treated as secure", enable it and relaunch chrome

# example question:
# what's the weather like outside?
# What's the closest restaurant from here?


with gr.Blocks(theme=gr.themes.Default()) as demo:
    state = gr.State(
        value={
            # "context": initial_context,
            "query": "",
            "route_points": [],
        }
    )

    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            time_picker = gr.Dropdown(
                choices=hour_options,
                label="What time is it? (HH:MM)",
                value="08:00",
                interactive=True,
            )
            history = gr.Radio(
                ["Yes", "No"],
                label="Maintain the conversation history?",
                value="No",
                interactive=True,
            )
            voice_character = gr.Radio(
                choices=[
                    "Morgan Freeman",
                    "Eddie Murphy",
                    "David Attenborough",
                    "Rick Sanches",
                ],
                label="Choose a voice",
                value="Morgan Freeman",
                show_label=True,
                interactive=True,
            )
            emotion = gr.Radio(
                choices=["Cheerful", "Grumpy"],
                label="Choose an emotion",
                value="Cheerful",
                show_label=True,
            )
            origin = gr.Textbox(
                value="Luxembourg Gare, Luxembourg", label="Origin", interactive=True
            )
            destination = gr.Textbox(
                value="Kirchberg Campus, Luxembourg",
                label="Destination",
                interactive=True,
            )

        with gr.Column(scale=2, min_width=600):
            map_plot = gr.Plot()

            # map_if = gr.Interface(fn=plot_map, inputs=year_input, outputs=map_plot)

    with gr.Row():
        with gr.Column():
            recorder = gr.Audio(
                type="filepath", label="Input audio", elem_id="recorder"
            )
            input_text = gr.Textbox(
                value="How is the weather?", label="Input text", interactive=True
            )
            vehicle_status = gr.JSON(
                value=vehicle.model_dump_json(), label="Vehicle status"
            )
        with gr.Column():
            output_audio = gr.Audio(label="output audio")
            output_text = gr.TextArea(value="", label="Output text", interactive=False)
    # iface = gr.Interface(
    #     fn=transcript,
    #     inputs=[
    #         gr.Textbox(value=initial_context, visible=False),
    #         gr.Audio(type="filepath", label="input audio", elem_id="recorder"),
    #         voice_character,
    #         emotion,
    #         place,
    #         time_picker,
    #         history,
    #         gr.State(),  # This will keep track of the context state across interactions.
    #     ],
    #     outputs=[gr.Audio(label="output audio"), gr.Textbox(visible=False), gr.State()],
    #     head=shortcut_js,
    # )

    # Update plot based on the origin and destination
    # Sets the current location and destination
    origin.submit(
        fn=calculate_route,
        inputs=[origin, destination],
        outputs=[map_plot, vehicle_status],
    )
    destination.submit(
        fn=calculate_route,
        inputs=[origin, destination],
        outputs=[map_plot, vehicle_status],
    )

    # Update time based on the time picker
    time_picker.select(fn=set_time, inputs=[time_picker], outputs=[vehicle_status])

    # Run the model if the input text is changed
    input_text.submit(fn=run_model, inputs=[input_text], outputs=[output_text])

# close all interfaces open to make the port available
gr.close_all()
# Launch the interface.

if __name__ == "__main__":
    demo.launch(debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=False)

# iface.launch(debug=True, share=False, server_name="0.0.0.0", server_port=7860, ssl_verify=False)