File size: 4,073 Bytes
c690ade
78e760c
b3d61a3
78e760c
e3db752
 
b3d61a3
e3db752
 
 
b3d61a3
e3db752
78e760c
 
 
 
 
 
b3d61a3
e3db752
 
 
 
b3d61a3
78e760c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3d61a3
c690ade
 
 
 
 
 
 
 
 
78e760c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3d61a3
78e760c
 
 
 
 
 
 
 
 
 
 
 
 
b3d61a3
 
 
78e760c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3d61a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import copy
from collections import namedtuple

import soundfile as sf
import torch
from loguru import logger
from melo.api import TTS as MeloTTS
from parler_tts import ParlerTTSForConditionalGeneration
from replicate import Client
from transformers import AutoTokenizer

from kitt.skills.common import config

replicate = Client(api_token=config.REPLICATE_API_KEY)

Voice = namedtuple("voice", ["name", "neutral", "angry", "speed"])

voices_replicate = [
    Voice(
        "Fast",
        neutral="empty",
        angry=None,
        speed=1.0,
    ),
    Voice(
        "Attenborough",
        neutral="https://zebel.ams3.digitaloceanspaces.com/xtts/short/attenborough-neutral.wav",
        angry=None,
        speed=1.2,
    ),
    Voice(
        "Rick",
        neutral="https://zebel.ams3.digitaloceanspaces.com/xtts/short/rick-neutral.wav",
        angry=None,
        speed=1.2,
    ),
    Voice(
        "Freeman",
        neutral="https://zebel.ams3.digitaloceanspaces.com/xtts/short/freeman-neutral.wav",
        angry="https://zebel.ams3.digitaloceanspaces.com/xtts/short/freeman-angry.wav",
        speed=1.1,
    ),
    Voice(
        "Walken",
        neutral="https://zebel.ams3.digitaloceanspaces.com/xtts/short/walken-neutral.wav",
        angry=None,
        speed=1.1,
    ),
    Voice(
        "Darth Wader",
        neutral="https://zebel.ams3.digitaloceanspaces.com/xtts/short/darth-neutral.wav",
        angry=None,
        speed=1.15,
    ),
]


def prep_for_tts(text: str):
    text_tts = copy.deepcopy(text)
    text_tts = text_tts.replace("km/h", "kilometers per hour")
    text_tts = text_tts.replace("°C", "degrees Celsius")
    text_tts = text_tts.replace("°F", "degrees Fahrenheit")
    text_tts = text_tts.replace("km", "kilometers")
    return text_tts


def voice_from_text(voice, voices):
    for v in voices:
        if voice == f"{v.name} - Neutral":
            return v.neutral
        if voice == f"{v.name} - Angry":
            return v.angry
    raise ValueError(f"Voice {voice} not found.")


def speed_from_text(voice, voices):
    for v in voices:
        if voice == f"{v.name} - Neutral":
            return v.speed
        if voice == f"{v.name} - Angry":
            return v.speed


def run_tts_replicate(text: str, voice_character: str):
    voice = voice_from_text(voice_character, voices_replicate)

    input = {"text": text, "speaker": voice, "cleanup_voice": True}

    output = replicate.run(
        # "afiaka87/tortoise-tts:e9658de4b325863c4fcdc12d94bb7c9b54cbfe351b7ca1b36860008172b91c71",
        "lucataco/xtts-v2:684bc3855b37866c0c65add2ff39c78f3dea3f4ff103a436465326e0f438d55e",
        input=input,
    )
    logger.info(f"sound output: {output}")
    return output


def get_fast_tts():
    device = "cuda:0" if torch.cuda.is_available() else "cpu"

    model = ParlerTTSForConditionalGeneration.from_pretrained(
        "parler-tts/parler-tts-mini-expresso"
    ).to(device)
    tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-expresso")
    return model, tokenizer, device


fast_tts = get_fast_tts()


def run_tts_fast(text: str):
    model, tokenizer, device = fast_tts
    description = "Thomas speaks moderately slowly in a sad tone with emphasis and high quality audio."

    input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
    prompt_input_ids = tokenizer(text, return_tensors="pt").input_ids.to(device)

    generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
    audio_arr = generation.cpu().numpy().squeeze()
    return (model.config.sampling_rate, audio_arr), dict(text=text, voice="Thomas")


def load_melo_tts():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = MeloTTS(language="EN", device=device)
    return model


melo_tts = load_melo_tts()


def run_melo_tts(text: str, voice: str):
    speed = 1.0
    speaker_ids = melo_tts.hps.data.spk2id
    audio = melo_tts.tts_to_file(text, speaker_ids["EN-Default"], None, speed=speed)
    return melo_tts.hps.data.sampling_rate, audio