diff --git "a/tts.ipynb" "b/tts.ipynb" deleted file mode 100644--- "a/tts.ipynb" +++ /dev/null @@ -1,707 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Text to Speech Playground" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" - ] - } - ], - "source": [ - "import os\n", - "\n", - "import torch\n", - "import gradio as gr\n", - "from TTS.api import TTS\n", - "os.environ[\"COQUI_TOS_AGREED\"] = \"1\"\n", - "# os.environ[\"PYTORCH_ENABLE_MPS_FALLBACK\"] = \"1\"" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import namedtuple\n", - "\n", - "Voice = namedtuple('voice', ['name', 'neutral','angry'])\n" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "metadata": {}, - "outputs": [], - "source": [ - "voices = [\n", - " Voice('Attenborough', neutral='audio/attenborough/neutral.wav', angry=None),\n", - " Voice('Rick', neutral='audio/rick/neutral.wav', angry=None),\n", - " Voice('Freeman', neutral='audio/freeman/neutral.wav', angry='audio/freeman/angry.wav'),\n", - " Voice('Walken', neutral='audio/walken/neutral.wav', angry=None),\n", - " Voice('Darth Wader', neutral='audio/darth/neutral.wav', angry=None),\n", - "]" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[voice(name='Attenborough', neutral='audio/attenborough/neutral.mp3', angry=None),\n", - " voice(name='Rick', neutral='audio/rick/neutral.mp3', angry=None),\n", - " voice(name='Freeman', neutral='audio/freeman/neutral.mp3', angry='audio/freeman/angry.mp3'),\n", - " voice(name='Walken', neutral='audio/walken/neutral.mp3', angry=None),\n", - " voice(name='Darth Wader', neutral='audio/darth/neutral.mp3', angry=None)]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "voices" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " > tts_models/multilingual/multi-dataset/xtts_v2 is already downloaded.\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", - " _torch_pytree._register_pytree_node(\n", - "/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", - " _torch_pytree._register_pytree_node(\n", - "/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/transformers/utils/generic.py:309: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.\n", - " _torch_pytree._register_pytree_node(\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " > Using model: xtts\n" - ] - } - ], - "source": [ - "#load model for text to speech\n", - "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", - "# device = \"mps\"\n", - "tts_pipelins = TTS(\"tts_models/multilingual/multi-dataset/xtts_v2\").to(device)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "import IPython\n" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [], - "source": [ - "speaker_embedding_cache = {}" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [], - "source": [ - "def compute_speaker_embedding(voice_path: str, config, pipeline, cache):\n", - " if voice_path not in cache:\n", - " cache[voice_path] = pipeline.synthesizer.tts_model.get_conditioning_latents(\n", - " audio_path=voice_path,\n", - " gpt_cond_len=config.gpt_cond_len,\n", - " gpt_cond_chunk_len=config.gpt_cond_chunk_len,\n", - " max_ref_length=config.max_ref_len,\n", - " sound_norm_refs=config.sound_norm_refs,\n", - " )\n", - " return cache[voice_path]" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [], - "source": [ - "out = compute_speaker_embedding(voices[0].neutral, tts_pipelins.synthesizer.tts_config, tts_pipelins, speaker_embedding_cache)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " > Text splitted to sentences.\n", - "['Hey Petra, so you are hungry?', 'and you like me to prepare some strawberries for you?', 'do you like strawberries?']\n", - " > Processing time: 15.77448582649231\n", - " > Real-time factor: 1.7459813091024587\n" - ] - } - ], - "source": [ - "out = tts_pipelins.tts(\n", - " \"Hello, I am Rick, pickle rick, you took a wrong turn and now you're stuck in a parallel universe\",\n", - " speaker_wav=\"audio/freeman/neutral.wav\",\n", - " language=\"en\",\n", - " # file_path=\"out.wav\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "from typing import List\n", - "import time" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "ref_audio_path = \"audio/freeman/neutral.wav\"" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [], - "source": [ - "config.max_ref_len = 360" - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [], - "source": [ - "config = tts_pipelins.synthesizer.tts_config\n", - "(gpt_cond_latent, speaker_embedding) = tts_pipelins.synthesizer.tts_model.get_conditioning_latents(\n", - " audio_path=ref_audio_path,\n", - " gpt_cond_len=config.gpt_cond_len,\n", - " gpt_cond_chunk_len=config.gpt_cond_chunk_len,\n", - " max_ref_length=config.max_ref_len,\n", - " sound_norm_refs=config.sound_norm_refs,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 107, - "metadata": {}, - "outputs": [], - "source": [ - "(gpt_cond_latent, speaker_embedding) = compute_speaker_embedding(voices[0].neutral, tts_pipelins.synthesizer.tts_config, tts_pipelins, speaker_embedding_cache)" - ] - }, - { - "cell_type": "code", - "execution_count": 114, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np" - ] - }, - { - "cell_type": "code", - "execution_count": 116, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(205872,)" - ] - }, - "execution_count": 116, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.array(out)" - ] - }, - { - "cell_type": "code", - "execution_count": 110, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "205872" - ] - }, - "execution_count": 110, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "len(out)" - ] - }, - { - "cell_type": "code", - "execution_count": 128, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " > Text splitted to sentences.\n", - "['Something is up!']\n", - " > Processing time: 2.9515581130981445\n", - " > Real-time factor: 1.588292083019672\n" - ] - } - ], - "source": [ - "out = tts(\n", - " tts_pipelins.synthesizer,\n", - " \"Something is up!\",\n", - " # speaker_wav=ref_audio_path,\n", - " language_name=\"en\",\n", - " speaker=None,\n", - " gpt_cond_latent=gpt_cond_latent,\n", - " speaker_embedding=speaker_embedding,\n", - " speed=1.1,\n", - " # file_path=\"out.wav\",\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 129, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " " - ], - "text/plain": [ - "" - ] - }, - "execution_count": 129, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "IPython.display.Audio(out, rate=22050)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [], - "source": [ - "from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input\n", -<<<<<<< Updated upstream - "\n", -======= - "# use_gl = self.vocoder_model is None\n", ->>>>>>> Stashed changes - "def tts(\n", - " self,\n", - " text: str = \"\",\n", - " language_name: str = \"\",\n", - " reference_wav=None,\n", - " gpt_cond_latent=None,\n", - " speaker_embedding=None,\n", - " split_sentences: bool = True,\n", - " **kwargs,\n", - ") -> List[int]:\n", - " \"\"\"🐸 TTS magic. Run all the models and generate speech.\n", - "\n", - " Args:\n", - " text (str): input text.\n", - " speaker_name (str, optional): speaker id for multi-speaker models. Defaults to \"\".\n", - " language_name (str, optional): language id for multi-language models. Defaults to \"\".\n", - " speaker_wav (Union[str, List[str]], optional): path to the speaker wav for voice cloning. Defaults to None.\n", - " style_wav ([type], optional): style waveform for GST. Defaults to None.\n", - " style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None.\n", - " reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None.\n", - " reference_speaker_name ([type], optional): speaker id of reference waveform. Defaults to None.\n", - " split_sentences (bool, optional): split the input text into sentences. Defaults to True.\n", - " **kwargs: additional arguments to pass to the TTS model.\n", - " Returns:\n", - " List[int]: [description]\n", - " \"\"\"\n", - " start_time = time.time()\n", - " wavs = []\n", - "\n", - " if not text and not reference_wav:\n", - " raise ValueError(\n", - " \"You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API.\"\n", - " )\n", - "\n", - " if text:\n", - " sens = [text]\n", - " if split_sentences:\n", - " print(\" > Text splitted to sentences.\")\n", - " sens = self.split_into_sentences(text)\n", - " print(sens)\n", - "\n", - " if not reference_wav: # not voice conversion\n", - " for sen in sens:\n", - " outputs = self.tts_model.inference(\n", - " sen,\n", - " language_name,\n", - " gpt_cond_latent,\n", - " speaker_embedding,\n", - " # GPT inference\n", - " temperature=0.75,\n", - " length_penalty=1.0,\n", - " repetition_penalty=10.0,\n", - " top_k=50,\n", - " top_p=0.85,\n", - " do_sample=True,\n", - " **kwargs,\n", - " )\n", - " waveform = outputs[\"wav\"]\n", - " if torch.is_tensor(waveform) and waveform.device != torch.device(\"cpu\") and not use_gl:\n", - " waveform = waveform.cpu()\n", - " if not use_gl:\n", - " waveform = waveform.numpy()\n", - " waveform = waveform.squeeze()\n", - "\n", - " # trim silence\n", - " if \"do_trim_silence\" in self.tts_config.audio and self.tts_config.audio[\"do_trim_silence\"]:\n", - " waveform = trim_silence(waveform, self.tts_model.ap)\n", - "\n", - " wavs += list(waveform)\n", - " wavs += [0] * 10000\n", - "\n", - "\n", - " # compute stats\n", - " process_time = time.time() - start_time\n", - " audio_time = len(wavs) / self.tts_config.audio[\"sample_rate\"]\n", - " print(f\" > Processing time: {process_time}\")\n", - " print(f\" > Real-time factor: {process_time / audio_time}\")\n", - " return wavs" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "type(tts_pipelins)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "IPython.display.Audio(out, rate=22050)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def text_to_speech(voice, tts):\n", - " return voice.neutral" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - " tts.tts_to_file(text= str(quest_processing[0]),\n", - " file_path=\"output.wav\",\n", - " speaker_wav=f'Audio_Files/{voice}.wav',\n", - " language=quest_processing[3],\n", - " emotion = \"angry\")\n", - "\n", - " audio_path = \"output.wav\"\n", - " return audio_path, state['context'], state" - ] - }, - { - "cell_type": "code", - "execution_count": 90, - "metadata": {}, - "outputs": [], - "source": [ - "voice_options = []\n", - "for voice in voices:\n", - " if voice.neutral:\n", - " voice_options.append(f\"{voice.name} - Neutral\")\n", - " if voice.angry:\n", - " voice_options.append(f\"{voice.name} - Angry\")" - ] - }, - { - "cell_type": "code", - "execution_count": 101, - "metadata": {}, - "outputs": [], - "source": [ - "def voice_from_text(voice):\n", - " for v in voices:\n", - " if voice == f\"{v.name} - Neutral\":\n", - " return v.neutral\n", - " if voice == f\"{v.name} - Angry\":\n", - " return v.angry" - ] - }, - { - "cell_type": "code", - "execution_count": 121, - "metadata": {}, - "outputs": [], - "source": [ - "def tts_gradio(text, voice, state):\n", - " print(text, voice, state)\n", - " voice_path = voice_from_text(voice)\n", - " (gpt_cond_latent, speaker_embedding) = compute_speaker_embedding(voice_path, tts_pipelins.synthesizer.tts_config, tts_pipelins, speaker_embedding_cache)\n", - " out = tts(\n", - " tts_pipelins.synthesizer,\n", - " text,\n", - " language_name=\"en\",\n", - " speaker=None,\n", - " gpt_cond_latent=gpt_cond_latent,\n", - " speaker_embedding=speaker_embedding,\n", - " speed=1.1,\n", - " # file_path=\"out.wav\",\n", - " )\n", - " return (22050, np.array(out)), dict(text=text, voice=voice)" - ] - }, - { - "cell_type": "code", - "execution_count": 122, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['audio/attenborough/neutral.wav'])" - ] - }, - "execution_count": 122, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "speaker_embedding_cache.keys()" - ] - }, - { - "cell_type": "code", - "execution_count": 127, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This is going to be fun, let's enjoy ourselves\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Closing server running on port: 7860\n", - "Running on local URL: http://0.0.0.0:7860\n", - "\n", - "To create a public link, set `share=True` in `launch()`.\n" - ] - }, - { - "data": { - "text/html": [ - "
" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This is going to be fun, let's enjoy ourselves Darth Wader - Neutral None\n", - " > Text splitted to sentences.\n", - "[\"This is going to be fun, let's enjoy ourselves\"]\n", - " > Processing time: 9.152068138122559\n", - " > Real-time factor: 1.8119083325456329\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/opt/homebrew/Caskroom/miniconda/base/envs/llm/lib/python3.11/site-packages/gradio/processing_utils.py:390: UserWarning: Trying to convert audio automatically from float64 to 16-bit int format.\n", - " warnings.warn(warning.format(data.dtype))\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "This is going to be fun, let's enjoy ourselves Darth Wader - Neutral {'text': \"This is going to be fun, let's enjoy ourselves\", 'voice': 'Darth Wader - Neutral'}\n", - " > Text splitted to sentences.\n", - "[\"This is going to be fun, let's enjoy ourselves\"]\n", - " > Processing time: 7.824646234512329\n", - " > Real-time factor: 1.8261372721316347\n", - "Keyboard interruption in main thread... closing server.\n" - ] - }, - { - "data": { - "text/plain": [] - }, - "execution_count": 127, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#INTERFACE WITH AUDIO TO AUDIO\n", - "\n", - "#to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/ \n", - "#in \"Insecure origins treated as secure\", enable it and relaunch chrome\n", - "\n", - "\n", - "model_answer= ''\n", - "general_context= \"This is going to be fun, let's enjoy ourselves\"\n", - "# Define the initial state with some initial context.\n", - "print(general_context)\n", - "initial_state = {'context': general_context}\n", - "initial_context= initial_state['context']\n", - "# Create the Gradio interface.\n", - "iface = gr.Interface(\n", - " fn=tts_gradio,\n", - " inputs=[\n", - " gr.Textbox(value=initial_context, visible=True, label='Enter the text to be converted to speech', placeholder=\"This is going to be fun, let's enjoy ourselves\", lines=5),\n", - " gr.Radio(choices=voice_options, label='Choose a voice', value=voice_options[0], show_label=True), # Radio button for voice selection\n", - " gr.State() # This will keep track of the context state across interactions.\n", - " ],\n", - " outputs=[\n", - " gr.Audio(label = 'output audio', autoplay=True),\n", - " gr.State()\n", - " ],\n", - " flagging_options=['👎', '👍'],\n", - ")\n", - "#close all interfaces open to make the port available\n", - "gr.close_all()\n", - "# Launch the interface.\n", - "iface.launch(debug=True, share=False, server_name=\"0.0.0.0\", server_port=7860, ssl_verify=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "base", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -}