import time
import gradio as gr
import numpy as np
import requests
import torch
import torchaudio
from transformers import pipeline



import skills
from skills.common import config, vehicle
from skills.routing import calculate_route
import ollama

### LLM Stuff ###
from langchain_community.llms import Ollama
from langchain.tools.base import StructuredTool

from skills import (
    get_weather,
    find_route,
    get_forecast,
    vehicle_status as vehicle_status_fn,
    search_points_of_interests,
    search_along_route_w_coordinates,
    do_anything_else,
    date_time_info
)
from skills import extract_func_args
from core import voice_options, load_tts_pipeline, tts_gradio


global_context = {
    "vehicle": vehicle,
    "query": "How is the weather?",
    "route_points": [],
}

speaker_embedding_cache = {}

MODEL_FUNC = "nexusraven"
MODEL_GENERAL = "llama3:instruct"

RAVEN_PROMPT_FUNC = """You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on."

{raven_tools}

{history}

User Query: Question: {input}<human_end>
"""

def get_prompt(template, input, history, tools):
    # "vehicle_status": vehicle_status_fn()[0]
    kwargs = {"history": history, "input": input}
    prompt = "<human>:\n"
    for tool in tools:
        func_signature, func_docstring = tool.description.split(" - ", 1)
        prompt += f'Function:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
    kwargs["raven_tools"] = prompt

    if history:
        kwargs["history"] = f"Previous conversation history:{history}\n"

    return template.format(**kwargs).replace("{{", "{").replace("}}", "}")

def use_tool(func_name, kwargs, tools):
    for tool in tools:
        if tool.name == func_name:
            return tool.invoke(input=kwargs)
    return None

# llm = Ollama(model="nexusraven", stop=["\nReflection:", "\nThought:"], keep_alive=60*10)


# Generate options for hours (00-23)
hour_options = [f"{i:02d}:00:00" for i in range(24)]


def search_along_route(query=""):
    """Search for points of interest along the route/way to the destination.

    Args:
        query (str, optional): The type of point of interest to search for. Defaults to "restaurant".
    
    """
    points = global_context["route_points"]
    # maybe reshape
    return search_along_route_w_coordinates(points, query)


def set_time(time_picker):
    vehicle.time = time_picker
    return vehicle.model_dump_json()


def get_vehicle_status(state):
    return state.value["vehicle"].model_dump_json()


tools = [
    StructuredTool.from_function(get_weather),
    StructuredTool.from_function(find_route),
    # StructuredTool.from_function(vehicle_status),
    StructuredTool.from_function(search_points_of_interests),
    StructuredTool.from_function(search_along_route),
    StructuredTool.from_function(date_time_info),
    StructuredTool.from_function(do_anything_else),
]


def run_generic_model(query):
    print(f"Running the generic model with query: {query}")
    data = {
        "prompt": f"Answer the question below in a short and concise manner.\n{query}",
        "model": MODEL_GENERAL,
        "options": {
            # "temperature": 0.1,
            # "stop":["\nReflection:", "\nThought:"]
        }
    }
    out = ollama.generate(**data)
    return out["response"]


def run_model(query, voice_character):
    query = query.strip().replace("'", "")
    print("Query: ", query)
    global_context["query"] = query
    global_context["prompt"] = get_prompt(RAVEN_PROMPT_FUNC, query, "", tools)
    print("Prompt: ", global_context["prompt"])
    data = {
        "prompt": global_context["prompt"],
        # "streaming": False,
        "model": "nexusraven",
        # "model": "smangrul/llama-3-8b-instruct-function-calling",
        "raw": True,
        "options": {
            "temperature": 0.5,
            "stop":["\nReflection:", "\nThought:"]
        }
    }
    out = ollama.generate(**data)
    llm_response = out["response"]
    if "Call: " in llm_response:
        print(f"llm_response: {llm_response}")
        llm_response = llm_response.replace("<bot_end>"," ")
        func_name, kwargs = extract_func_args(llm_response)
        print(f"Function: {func_name}, Args: {kwargs}")
        if func_name == "do_anything_else":
            output_text = run_generic_model(query)
        else:
            output_text = use_tool(func_name, kwargs, tools)
    else:
        output_text = out["response"]

    if type(output_text) == tuple:
        output_text = output_text[0]
    gr.Info(f"Output text: {output_text}, generating voice output...")
    return output_text, tts_gradio(tts_pipeline, output_text, voice_character, speaker_embedding_cache)[0]


def calculate_route_gradio(origin, destination):
    plot, vehicle_status, points = calculate_route(origin, destination)
    global_context["route_points"] = points
    vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
    return plot, vehicle_status


def update_vehicle_status(trip_progress):
    n_points = len(global_context["route_points"])
    new_coords = global_context["route_points"][min(int(trip_progress / 100 * n_points), n_points - 1)]
    new_coords = new_coords["latitude"], new_coords["longitude"]
    print(f"Trip progress: {trip_progress}, len: {n_points}, new_coords: {new_coords}")
    vehicle.location_coordinates = new_coords
    vehicle.location = ""
    return vehicle.model_dump_json()


device = "cuda" if torch.cuda.is_available() else "cpu"
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en", device=device)


def save_audio_as_wav(data, sample_rate, file_path):
    # make a tensor from the numpy array
    data = torch.tensor(data).reshape(1, -1)
    torchaudio.save(file_path, data, sample_rate=sample_rate, bits_per_sample=16, encoding="PCM_S")


def save_and_transcribe_audio(audio):
    try:
        # capture the audio and save it to a file as wav or mp3
        # file_name = save("audioinput.wav")
        sr, y = audio
        # y = y.astype(np.float32)
        # y /= np.max(np.abs(y))

        # add timestamp to file name
        filename = f"recordings/audio{time.time()}.wav"
        save_audio_as_wav(y, sr, filename)
        
        sr, y = audio
        y = y.astype(np.float32)
        y /= np.max(np.abs(y))
        text = transcriber({"sampling_rate": sr, "raw":y})["text"]
    except Exception as e:
        print(f"Error: {e}")
        return "Error transcribing audio"
    return text

# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
# in "Insecure origins treated as secure", enable it and relaunch chrome

# example question:
# what's the weather like outside?
# What's the closest restaurant from here?


tts_pipeline = load_tts_pipeline()


with gr.Blocks(theme=gr.themes.Default()) as demo:
    state = gr.State(
        value={
            # "context": initial_context,
            "query": "",
            "route_points": [],
        }
    )
    trip_points = gr.State(value=[])

    with gr.Row():
        with gr.Column(scale=1, min_width=300):
            time_picker = gr.Dropdown(
                choices=hour_options,
                label="What time is it? (HH:MM)",
                value="08:00:00",
                interactive=True,
            )
            history = gr.Radio(
                ["Yes", "No"],
                label="Maintain the conversation history?",
                value="No",
                interactive=True,
            )
            voice_character = gr.Radio(choices=voice_options, label='Choose a voice', value=voice_options[0], show_label=True)
            origin = gr.Textbox(
                value="Mondorf-les-Bains, Luxembourg", label="Origin", interactive=True
            )
            destination = gr.Textbox(
                value="Rue Alphonse Weicker, Luxembourg",
                label="Destination",
                interactive=True,
            )

        with gr.Column(scale=2, min_width=600):
            map_plot = gr.Plot()
            trip_progress = gr.Slider(0, 100, step=5, label="Trip progress", interactive=True)

            # map_if = gr.Interface(fn=plot_map, inputs=year_input, outputs=map_plot)

    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(
                type="numpy",sources=["microphone"], label="Input audio", elem_id="input_audio"
            )
            input_text = gr.Textbox(
                value="How is the weather?", label="Input text", interactive=True
            )
            vehicle_status = gr.JSON(
                value=vehicle.model_dump_json(), label="Vehicle status"
            )
        with gr.Column():
            output_audio = gr.Audio(label="output audio", autoplay=True)
            output_text = gr.TextArea(value="", label="Output text", interactive=False)
    # iface = gr.Interface(
    #     fn=transcript,
    #     inputs=[
    #         gr.Textbox(value=initial_context, visible=False),
    #         gr.Audio(type="filepath", label="input audio", elem_id="recorder"),
    #         voice_character,
    #         emotion,
    #         place,
    #         time_picker,
    #         history,
    #         gr.State(),  # This will keep track of the context state across interactions.
    #     ],
    #     outputs=[gr.Audio(label="output audio"), gr.Textbox(visible=False), gr.State()],
    #     head=shortcut_js,
    # )

    # Update plot based on the origin and destination
    # Sets the current location and destination
    origin.submit(
        fn=calculate_route_gradio,
        inputs=[origin, destination],
        outputs=[map_plot, vehicle_status],
    )
    destination.submit(
        fn=calculate_route_gradio,
        inputs=[origin, destination],
        outputs=[map_plot, vehicle_status],
    )

    # Update time based on the time picker
    time_picker.select(fn=set_time, inputs=[time_picker], outputs=[vehicle_status])

    # Run the model if the input text is changed
    input_text.submit(fn=run_model, inputs=[input_text, voice_character], outputs=[output_text, output_audio])

    # Set the vehicle status based on the trip progress
    trip_progress.release(
        fn=update_vehicle_status, inputs=[trip_progress], outputs=[vehicle_status]
    )

    # Save and transcribe the audio
    input_audio.stop_recording(
        fn=save_and_transcribe_audio, inputs=[input_audio], outputs=[input_text]
    )

# close all interfaces open to make the port available
gr.close_all()
# Launch the interface.

if __name__ == "__main__":
    # demo.launch(debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=False)
    demo.launch(debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=True, share=True)

# iface.launch(debug=True, share=False, server_name="0.0.0.0", server_port=7860, ssl_verify=False)