Spaces:
Runtime error
Runtime error
sashavor
commited on
Commit
·
393f86d
1
Parent(s):
912ee6f
major app update
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
|
6 |
+
HF_TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
|
7 |
+
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "co2_submissions")
|
8 |
+
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="AI Carbon Calculator",
|
11 |
+
layout="wide",
|
12 |
+
)
|
13 |
+
|
14 |
+
tdp_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/gpus.csv"
|
15 |
+
compute_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/impact.csv"
|
16 |
+
|
17 |
+
|
18 |
+
electricity_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/2021-10-27yearly_averages.csv"
|
19 |
+
|
20 |
+
server_sheet_id = "1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_Nv6jF3k"
|
21 |
+
server_sheet_name = "Server%20Carbon%20Footprint"
|
22 |
+
server_url = f"https://docs.google.com/spreadsheets/d/{server_sheet_id}/gviz/tq?tqx=out:csv&sheet={server_sheet_name}"
|
23 |
+
|
24 |
+
|
25 |
+
embodied_gpu_sheet_id = "1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_Nv6jF3k"
|
26 |
+
embodied_gpu_sheet_name = "Scope%203%20Ratios"
|
27 |
+
embodied_gpu_url = f"https://docs.google.com/spreadsheets/d/{embodied_gpu_sheet_id}/gviz/tq?tqx=out:csv&sheet={embodied_gpu_sheet_name}"
|
28 |
+
|
29 |
+
TDP =pd.read_csv(tdp_url)
|
30 |
+
|
31 |
+
instances = pd.read_csv(compute_url)
|
32 |
+
providers = [p.upper() for p in instances['provider'].unique().tolist()]
|
33 |
+
providers.append('Local/Private Infastructure')
|
34 |
+
|
35 |
+
kg_per_mile = 0.348
|
36 |
+
|
37 |
+
electricity = pd.read_csv(electricity_url)
|
38 |
+
servers = pd.read_csv(server_url)
|
39 |
+
embodied_gpu = pd.read_csv(embodied_gpu_url)
|
40 |
+
|
41 |
+
|
42 |
+
st.title("AI Carbon Calculator")
|
43 |
+
|
44 |
+
st.markdown('## Estimate your model\'s CO2 carbon footprint!')
|
45 |
+
|
46 |
+
st.markdown('Building on the work of the [ML CO2 Calculator](https://mlco2.github.io/impact/), this tool allows you to consider'
|
47 |
+
'other aspects of your model\'s carbon footprint based on the LCA methodology.')
|
48 |
+
|
49 |
+
st.markdown('We will consider 3 aspects of your model: the dynamic emissions, idle emissions embodied emissions.')
|
50 |
+
|
51 |
+
st.markdown('### Dynamic Emissions')
|
52 |
+
with st.expander("Calculate the emissions produced by energy consumption of model training"):
|
53 |
+
with st.form(key='dynamic_emissions'):
|
54 |
+
col1, col2, col3, col4 = st.columns(4)
|
55 |
+
with col1:
|
56 |
+
hardware = st.selectbox('GPU used', TDP['name'].tolist())
|
57 |
+
gpu_tdp = TDP['tdp_watts'][TDP['name'] == hardware].tolist()[0]
|
58 |
+
st.markdown("Different GPUs have different TDP (Thermal Design Power), which impacts how much energy you use.")
|
59 |
+
with col2:
|
60 |
+
training_time = st.number_input('Total number of GPU hours')
|
61 |
+
st.markdown('This is calculated by multiplying the number of GPUs you used by the training time: '
|
62 |
+
'i.e. if you used 100 GPUs for 10 hours, this is equal to 100x10 = 1,000 GPU hours.')
|
63 |
+
with col3:
|
64 |
+
provider = st.selectbox('Provider used', providers)
|
65 |
+
st.markdown('If you can\'t find your provider here, select "Local/Private Infrastructure".')
|
66 |
+
with col4:
|
67 |
+
if provider != 'Local/Private Infastructure':
|
68 |
+
provider_instances = instances['region'][instances['provider'] == provider.lower()].unique().tolist()
|
69 |
+
region = st.selectbox('Provider used', provider_instances)
|
70 |
+
carbon_intensity = instances['impact'][(instances['provider'] == provider.lower()) & (instances['region'] == region)].tolist()[0]
|
71 |
+
|
72 |
+
else:
|
73 |
+
carbon_intensity = st.number_input('Carbon intensity of your energy grid, in grams of CO2 per kWh')
|
74 |
+
st.markdown('You can consult a resource like the [IEA](https://www.iea.org/countries) or '
|
75 |
+
' [Electricity Map](https://app.electricitymaps.com/) to get this information.')
|
76 |
+
|
77 |
+
dynamic_emissions = round(gpu_tdp * training_time * carbon_intensity/1000000)
|
78 |
+
st.metric(label="Dynamic emissions", value=str(dynamic_emissions)+' kilograms of CO2eq')
|
79 |
+
st.markdown('This is roughly equivalent to '+ str(round(dynamic_emissions/kg_per_mile,1)) + ' miles driven in an average US car'
|
80 |
+
' produced in 2021. [(Source: energy.gov)](https://www.energy.gov/eere/vehicles/articles/fotw-1223-january-31-2022-average-carbon-dioxide-emissions-2021-model-year)')
|
81 |
+
hf_writer.setup([hardware, training_time, provider, carbon_intensity, dynamic_emissions], "dynamic_emissions")
|
82 |
+
st.form_submit_button(label="Share my data", help="Submit the data from your model anonymously for research purposes!",
|
83 |
+
onclick=hf_writer.flag([hardware, training_time, provider, carbon_intensity, dynamic_emissions]))
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
st.markdown('### Idle Emissions')
|
88 |
+
st.markdown('Do you know what the PUE (Power Usage Effectiveness) of your infrastructure is?')
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
st.markdown('### Embodied Emissions')
|
93 |
+
st.markdown('Choose your hardware, runtime and cloud provider/physical infrastructure to estimate the carbon impact of your research.')
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
st.markdown('#### More information about our Methodology')
|
99 |
+
|
100 |
+
st.image('images/LCA_CO2.png', caption='The LCA methodology - the parts in green are those we focus on.')
|
101 |
+
|
102 |
+
modelname = st.selectbox('Choose a model to test', TDP)
|