Spaces:
Runtime error
Runtime error
sashavor
commited on
Commit
Β·
ce8bd36
1
Parent(s):
795ccdc
lotsa changes
Browse files
app.py
CHANGED
@@ -2,10 +2,11 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import os, csv
|
4 |
from huggingface_hub import hf_hub_download, HfApi
|
|
|
5 |
|
6 |
HF_TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
|
7 |
|
8 |
-
CACHED_FILE_PATH = hf_hub_download(repo_id="sasha/co2_submissions", filename="
|
9 |
|
10 |
api = HfApi()
|
11 |
|
@@ -15,18 +16,18 @@ def write_to_csv(hardware, training_time, provider, carbon_intensity, dynamic_em
|
|
15 |
writer.writerow([hardware, training_time, provider, carbon_intensity, dynamic_emissions])
|
16 |
api.upload_file(
|
17 |
path_or_fileobj=CACHED_FILE_PATH,
|
18 |
-
path_in_repo="
|
19 |
repo_id="sasha/co2_submissions",
|
20 |
repo_type="dataset",
|
21 |
)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
st.set_page_config(
|
26 |
page_title="AI Carbon Calculator",
|
27 |
layout="wide",
|
28 |
)
|
29 |
|
|
|
|
|
30 |
tdp_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/gpus.csv"
|
31 |
compute_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/impact.csv"
|
32 |
|
@@ -38,9 +39,8 @@ server_sheet_name = "Server%20Carbon%20Footprint"
|
|
38 |
server_url = f"https://docs.google.com/spreadsheets/d/{server_sheet_id}/gviz/tq?tqx=out:csv&sheet={server_sheet_name}"
|
39 |
|
40 |
|
41 |
-
embodied_gpu_sheet_id = "1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_Nv6jF3k"
|
42 |
embodied_gpu_sheet_name = "Scope%203%20Ratios"
|
43 |
-
embodied_gpu_url = f"https://docs.google.com/spreadsheets/d/{
|
44 |
|
45 |
TDP =pd.read_csv(tdp_url)
|
46 |
|
@@ -52,18 +52,21 @@ kg_per_mile = 0.348
|
|
52 |
|
53 |
electricity = pd.read_csv(electricity_url)
|
54 |
servers = pd.read_csv(server_url)
|
|
|
55 |
embodied_gpu = pd.read_csv(embodied_gpu_url)
|
|
|
56 |
|
57 |
#st.image('images/MIT_carbon_image_narrow.png', use_column_width=True, caption = 'Image credit: ')
|
58 |
st.title("AI Carbon Calculator")
|
59 |
|
60 |
-
st.markdown('## Estimate your model\'s CO2 carbon footprint!')
|
61 |
|
62 |
-
st.markdown('#####
|
63 |
-
|
|
|
64 |
|
65 |
-
st.markdown('### Dynamic Emissions')
|
66 |
-
st.markdown('##### These are the
|
67 |
with st.expander("Calculate the dynamic emissions of your model"):
|
68 |
col1, col2, col3, col4 = st.columns(4)
|
69 |
with col1:
|
@@ -91,31 +94,73 @@ with st.expander("Calculate the dynamic emissions of your model"):
|
|
91 |
st.metric(label="Dynamic emissions", value=str(dynamic_emissions)+' kilograms of CO2eq')
|
92 |
st.markdown('This is roughly equivalent to '+ str(round(dynamic_emissions/kg_per_mile,1)) + ' miles driven in an average US car'
|
93 |
' produced in 2021. [(Source: energy.gov)](https://www.energy.gov/eere/vehicles/articles/fotw-1223-january-31-2022-average-carbon-dioxide-emissions-2021-model-year)')
|
94 |
-
st.button(label="Anonymously share my data", help="Share the data from your model anonymously for research purposes!",\
|
95 |
-
on_click = lambda *args: write_to_csv(hardware, training_time, provider, carbon_intensity, dynamic_emissions))
|
96 |
-
|
97 |
-
st.markdown('### Idle Emissions')
|
98 |
-
st.markdown('##### These are the emissions produced by generating the electricity needed to power the rest of the infrastructure'
|
99 |
-
'used for model training -- the datacenter, network, heating/cooling, storage, etc.')
|
100 |
-
|
101 |
-
|
102 |
|
103 |
-
st.markdown('###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
st.markdown('##### These are the emissions produced by generating the electricity needed to power the rest of the infrastructure'
|
105 |
'used for model training -- the datacenter, network, heating/cooling, storage, etc.')
|
106 |
with st.expander("Calculate the idle emissions of your model"):
|
107 |
-
st.markdown('
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
st.markdown('
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
with st.expander("More information about our Methodology"):
|
117 |
st.markdown('Building on the work of the [ML CO2 Calculator](https://mlco2.github.io/impact/), this tool allows you to consider'
|
118 |
' other aspects of your model\'s carbon footprint based on the LCA methodology.')
|
119 |
-
|
120 |
-
|
121 |
st.image('images/LCA_CO2.png', caption='The LCA methodology - the parts in green are those we focus on.')
|
|
|
2 |
import pandas as pd
|
3 |
import os, csv
|
4 |
from huggingface_hub import hf_hub_download, HfApi
|
5 |
+
import math
|
6 |
|
7 |
HF_TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
|
8 |
|
9 |
+
CACHED_FILE_PATH = hf_hub_download(repo_id="sasha/co2_submissions", filename="co2_emissions.csv", repo_type="dataset")
|
10 |
|
11 |
api = HfApi()
|
12 |
|
|
|
16 |
writer.writerow([hardware, training_time, provider, carbon_intensity, dynamic_emissions])
|
17 |
api.upload_file(
|
18 |
path_or_fileobj=CACHED_FILE_PATH,
|
19 |
+
path_in_repo="co2_emissions.csv",
|
20 |
repo_id="sasha/co2_submissions",
|
21 |
repo_type="dataset",
|
22 |
)
|
23 |
|
|
|
|
|
24 |
st.set_page_config(
|
25 |
page_title="AI Carbon Calculator",
|
26 |
layout="wide",
|
27 |
)
|
28 |
|
29 |
+
|
30 |
+
|
31 |
tdp_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/gpus.csv"
|
32 |
compute_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/impact.csv"
|
33 |
|
|
|
39 |
server_url = f"https://docs.google.com/spreadsheets/d/{server_sheet_id}/gviz/tq?tqx=out:csv&sheet={server_sheet_name}"
|
40 |
|
41 |
|
|
|
42 |
embodied_gpu_sheet_name = "Scope%203%20Ratios"
|
43 |
+
embodied_gpu_url = f"https://docs.google.com/spreadsheets/d/{server_sheet_id}/gviz/tq?tqx=out:csv&sheet={embodied_gpu_sheet_name}"
|
44 |
|
45 |
TDP =pd.read_csv(tdp_url)
|
46 |
|
|
|
52 |
|
53 |
electricity = pd.read_csv(electricity_url)
|
54 |
servers = pd.read_csv(server_url)
|
55 |
+
#print(servers.columns)
|
56 |
embodied_gpu = pd.read_csv(embodied_gpu_url)
|
57 |
+
#print(embodied_gpu.columns)
|
58 |
|
59 |
#st.image('images/MIT_carbon_image_narrow.png', use_column_width=True, caption = 'Image credit: ')
|
60 |
st.title("AI Carbon Calculator")
|
61 |
|
62 |
+
st.markdown('## Estimate your AI model\'s CO2 carbon footprint! ππ₯οΈπ')
|
63 |
|
64 |
+
st.markdown('##### The calculators below will help you calculate different aspects of your model\'s carbon footprint, as we did for'
|
65 |
+
' BLOOM πΈ, a 176-billion parameter language model [(see our preprint!)](https://arxiv.org/abs/2211.02001)')
|
66 |
+
st.markdown('##### Don\'t forget to share your data to help us get a better idea of AI model\'s carbon emissions!')
|
67 |
|
68 |
+
st.markdown('### Dynamic Emissions π')
|
69 |
+
st.markdown('##### These are the emissions produced by generating the electricity necessary for powering model training.')
|
70 |
with st.expander("Calculate the dynamic emissions of your model"):
|
71 |
col1, col2, col3, col4 = st.columns(4)
|
72 |
with col1:
|
|
|
94 |
st.metric(label="Dynamic emissions", value=str(dynamic_emissions)+' kilograms of CO2eq')
|
95 |
st.markdown('This is roughly equivalent to '+ str(round(dynamic_emissions/kg_per_mile,1)) + ' miles driven in an average US car'
|
96 |
' produced in 2021. [(Source: energy.gov)](https://www.energy.gov/eere/vehicles/articles/fotw-1223-january-31-2022-average-carbon-dioxide-emissions-2021-model-year)')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
st.markdown('### Experimental Emissions π©βπ¬')
|
99 |
+
st.markdown('##### These are the emissions produced by generating the electricity necessary for powering the experiments and tests needed to pick your final model architecture '
|
100 |
+
'and parameters.')
|
101 |
+
with st.expander("Calculate the experimental emissions of your model"):
|
102 |
+
st.markdown('##### Consult your training logs to figure out how many ablations, baselines and experiments were run before converging on the final model.')
|
103 |
+
experimentation_time = st.number_input(label='Number of hours of experimentation run', value=training_time)
|
104 |
+
st.markdown('##### As a baseline, language models such as [OPT](https://arxiv.org/pdf/2205.01068.pdf) and [BLOOM](https://arxiv.org/abs/2211.02001)'
|
105 |
+
' found that experimentation roughly doubles the amount of compute used by training the model itself.')
|
106 |
+
experimental_emissions = round(gpu_tdp * (experimentation_time) * carbon_intensity/1000000)
|
107 |
+
st.metric(label="Experimental emissions", value=str(0.0)+' kilograms of CO2eq')
|
108 |
+
|
109 |
+
st.markdown('### Idle Emissions π')
|
110 |
st.markdown('##### These are the emissions produced by generating the electricity needed to power the rest of the infrastructure'
|
111 |
'used for model training -- the datacenter, network, heating/cooling, storage, etc.')
|
112 |
with st.expander("Calculate the idle emissions of your model"):
|
113 |
+
st.markdown('##### A proxy often used to reflect idle emissions is PUE (Power Usage Effectiveness), which represents '
|
114 |
+
' the ratio of energy used for computing overheads like cooling, which varies depending on the data center.')
|
115 |
+
pue = instances['PUE'][(instances['provider'] == provider.lower()) & (instances['region'] == region)].tolist()[0]
|
116 |
+
if math.isnan(pue) == True:
|
117 |
+
if provider != 'Local/Private Infastructure':
|
118 |
+
st.markdown('##### The exact information isn\'t available for this datacenter! We will use your provider\'s average instead, which is:')
|
119 |
+
if provider == 'AWS':
|
120 |
+
pue = 1.135
|
121 |
+
st.markdown('#### ' + str(pue)+ " [(source)](https://www.cloudcarbonfootprint.org/docs/methodology/)")
|
122 |
+
elif provider == 'GCP':
|
123 |
+
pue = 1.1
|
124 |
+
st.markdown('#### ' + str(pue) + " [(source)](https://www.google.ca/about/datacenters/efficiency/)")
|
125 |
+
elif provider == 'AZURE':
|
126 |
+
pue = 1.185
|
127 |
+
st.markdown('#### ' + str(pue) + " [(source)](https://www.cloudcarbonfootprint.org/docs/methodology/)")
|
128 |
+
elif provider == 'OVH':
|
129 |
+
pue = 1.28
|
130 |
+
st.markdown('#### ' + str(pue) + " [(source)](https://corporate.ovhcloud.com/en-ca/sustainability/environment/)")
|
131 |
+
elif provider == 'SCALEWAY':
|
132 |
+
pue = 1.35
|
133 |
+
st.markdown('#### ' +str(pue) + " [(source)](https://pue.dc3.scaleway.com/en/)")
|
134 |
|
135 |
+
else:
|
136 |
+
st.markdown('##### Try to find the PUE of your local infrastructure. Otherwise, you can use the industry average, 1.58:')
|
137 |
+
pue = st.number_input('Total number of GPU hours', value = 1.58)
|
138 |
+
else:
|
139 |
+
st.markdown('##### The PUE of the datacenter you used is: ')
|
140 |
+
st.markdown('#### '+ str(pue))
|
141 |
+
pue_emissions = round((experimental_emissions+ dynamic_emissions)*pue)
|
142 |
+
st.metric(label="Emissions considering PUE", value=str(pue_emissions)+' kilograms of CO2eq')
|
143 |
+
|
144 |
+
st.markdown('### Embodied Emissions π₯οΈπ¨')
|
145 |
+
st.markdown('##### These are the emissions associated with the materials and processes involved in producing'
|
146 |
+
' the computing equipment needed for AI models.')
|
147 |
+
with st.expander("Calculate the embodied emissions of your model"):
|
148 |
+
st.markdown('##### These are the trickiest emissions to track down since a lot of the information needed is missing!')
|
149 |
+
|
150 |
+
m = st.markdown("""
|
151 |
+
<style>
|
152 |
+
div.stButton > button:first-child {
|
153 |
+
background-color: rgb(80, 200, 120);
|
154 |
+
font-size: 20px;
|
155 |
+
height: 3em;
|
156 |
+
}
|
157 |
+
</style>""", unsafe_allow_html=True)
|
158 |
+
buttoncol1, cuttoncol2, buttoncol3 = st.columns(3)
|
159 |
+
with cuttoncol2:
|
160 |
+
st.button(label="Anonymously share my data!", on_click = lambda *args: write_to_csv(hardware, training_time, provider, carbon_intensity, dynamic_emissions))
|
161 |
+
|
162 |
+
st.markdown('### Methodology')
|
163 |
with st.expander("More information about our Methodology"):
|
164 |
st.markdown('Building on the work of the [ML CO2 Calculator](https://mlco2.github.io/impact/), this tool allows you to consider'
|
165 |
' other aspects of your model\'s carbon footprint based on the LCA methodology.')
|
|
|
|
|
166 |
st.image('images/LCA_CO2.png', caption='The LCA methodology - the parts in green are those we focus on.')
|