|
import os |
|
import gradio as gr |
|
from transformers import pipeline |
|
import spacy |
|
import subprocess |
|
import nltk |
|
from nltk.corpus import wordnet |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import word_tokenize |
|
from spellchecker import SpellChecker |
|
import re |
|
import string |
|
import random |
|
|
|
|
|
nltk.download('punkt') |
|
nltk.download('stopwords') |
|
nltk.download('averaged_perceptron_tagger') |
|
nltk.download('averaged_perceptron_tagger_eng') |
|
nltk.download('wordnet') |
|
nltk.download('omw-1.4') |
|
nltk.download('punkt_tab') |
|
|
|
|
|
stop_words = set(stopwords.words("english")) |
|
|
|
|
|
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'} |
|
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'} |
|
|
|
|
|
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") |
|
|
|
|
|
spell = SpellChecker() |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except OSError: |
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
def plagiarism_removal(text): |
|
def plagiarism_remover(word): |
|
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation: |
|
return word |
|
|
|
|
|
synonyms = set() |
|
for syn in wordnet.synsets(word): |
|
for lemma in syn.lemmas(): |
|
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower(): |
|
synonyms.add(lemma.name()) |
|
|
|
pos_tag_word = nltk.pos_tag([word])[0] |
|
|
|
if pos_tag_word[1] in exclude_tags: |
|
return word |
|
|
|
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]] |
|
|
|
if not filtered_synonyms: |
|
return word |
|
|
|
synonym_choice = random.choice(filtered_synonyms) |
|
|
|
if word.istitle(): |
|
return synonym_choice.title() |
|
return synonym_choice |
|
|
|
para_split = word_tokenize(text) |
|
final_text = [plagiarism_remover(word) for word in para_split] |
|
|
|
corrected_text = [] |
|
for i in range(len(final_text)): |
|
if final_text[i] in string.punctuation and i > 0: |
|
corrected_text[-1] += final_text[i] |
|
else: |
|
corrected_text.append(final_text[i]) |
|
|
|
return " ".join(corrected_text) |
|
|
|
def paraphrase_and_correct(text): |
|
paragraphs = text.split("\n\n") |
|
|
|
|
|
processed_paragraphs = [] |
|
for paragraph in paragraphs: |
|
cleaned_text = remove_redundant_words(paragraph) |
|
plag_removed = plagiarism_removal(cleaned_text) |
|
paraphrased_text = capitalize_sentences_and_nouns(plag_removed) |
|
paraphrased_text = force_first_letter_capital(paraphrased_text) |
|
paraphrased_text = correct_article_errors(paraphrased_text) |
|
paraphrased_text = correct_tense_errors(paraphrased_text) |
|
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text) |
|
paraphrased_text = fix_possessives(paraphrased_text) |
|
paraphrased_text = correct_spelling(paraphrased_text) |
|
paraphrased_text = fix_punctuation_spacing(paraphrased_text) |
|
processed_paragraphs.append(paraphrased_text) |
|
|
|
return "\n\n".join(processed_paragraphs) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("AI Detection"): |
|
t1 = gr.Textbox(lines=5, label='Text') |
|
button1 = gr.Button("π€ Predict!") |
|
label1 = gr.Textbox(lines=1, label='Predicted Label π') |
|
score1 = gr.Textbox(lines=1, label='Prob') |
|
|
|
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1]) |
|
|
|
with gr.Tab("Paraphrasing & Grammar Correction"): |
|
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction') |
|
button2 = gr.Button("π Paraphrase and Correct") |
|
result2 = gr.Textbox(lines=5, label='Corrected Text') |
|
|
|
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2) |
|
|
|
demo.launch(share=True) |
|
|