|
import os |
|
import gradio as gr |
|
from transformers import pipeline |
|
import spacy |
|
import subprocess |
|
import nltk |
|
from nltk.corpus import wordnet |
|
from nltk.corpus import stopwords |
|
from nltk.tokenize import word_tokenize |
|
from spellchecker import SpellChecker |
|
import re |
|
import string |
|
import random |
|
|
|
|
|
nltk.download('punkt') |
|
nltk.download('punkt_tab') |
|
nltk.download('stopwords') |
|
nltk.download('averaged_perceptron_tagger') |
|
nltk.download('averaged_perceptron_tagger_eng') |
|
|
|
nltk.download('wordnet') |
|
|
|
|
|
stop_words = set(stopwords.words("english")) |
|
|
|
|
|
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'} |
|
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'} |
|
|
|
|
|
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") |
|
|
|
|
|
spell = SpellChecker() |
|
|
|
|
|
try: |
|
nlp = spacy.load("en_core_web_sm") |
|
except OSError: |
|
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) |
|
nlp = spacy.load("en_core_web_sm") |
|
|
|
def plagiarism_removal(text): |
|
def plagiarism_remover(word): |
|
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation: |
|
return word |
|
|
|
|
|
synonyms = set() |
|
for syn in wordnet.synsets(word): |
|
for lemma in syn.lemmas(): |
|
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower(): |
|
synonyms.add(lemma.name()) |
|
|
|
pos_tag_word = nltk.pos_tag([word])[0] |
|
|
|
if pos_tag_word[1] in exclude_tags: |
|
return word |
|
|
|
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]] |
|
|
|
if not filtered_synonyms: |
|
return word |
|
|
|
synonym_choice = random.choice(filtered_synonyms) |
|
|
|
if word.istitle(): |
|
return synonym_choice.title() |
|
return synonym_choice |
|
|
|
para_split = word_tokenize(text) |
|
final_text = [plagiarism_remover(word) for word in para_split] |
|
|
|
corrected_text = [] |
|
for i in range(len(final_text)): |
|
if final_text[i] in string.punctuation and i > 0: |
|
corrected_text[-1] += final_text[i] |
|
else: |
|
corrected_text.append(final_text[i]) |
|
|
|
return " ".join(corrected_text) |
|
|
|
def predict_en(text): |
|
res = pipeline_en(text)[0] |
|
return res['label'], res['score'] |
|
|
|
def remove_redundant_words(text): |
|
doc = nlp(text) |
|
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} |
|
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] |
|
return ' '.join(filtered_text) |
|
|
|
def fix_punctuation_spacing(text): |
|
words = text.split(' ') |
|
cleaned_words = [] |
|
punctuation_marks = {',', '.', "'", '!', '?', ':'} |
|
|
|
for word in words: |
|
if cleaned_words and word and word[0] in punctuation_marks: |
|
cleaned_words[-1] += word |
|
else: |
|
cleaned_words.append(word) |
|
|
|
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \ |
|
.replace(' !', '!').replace(' ?', '?').replace(' :', ':') |
|
|
|
def fix_possessives(text): |
|
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text) |
|
return text |
|
|
|
def capitalize_sentences_and_nouns(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
|
|
for sent in doc.sents: |
|
sentence = [] |
|
for token in sent: |
|
if token.i == sent.start: |
|
sentence.append(token.text.capitalize()) |
|
elif token.pos_ == "PROPN": |
|
sentence.append(token.text.capitalize()) |
|
else: |
|
sentence.append(token.text) |
|
corrected_text.append(' '.join(sentence)) |
|
|
|
return ' '.join(corrected_text) |
|
|
|
def force_first_letter_capital(text): |
|
sentences = re.split(r'(?<=\w[.!?])\s+', text) |
|
capitalized_sentences = [] |
|
|
|
for sentence in sentences: |
|
if sentence: |
|
capitalized_sentence = sentence[0].capitalize() + sentence[1:] |
|
if not re.search(r'[.!?]$', capitalized_sentence): |
|
capitalized_sentence += '.' |
|
capitalized_sentences.append(capitalized_sentence) |
|
|
|
return " ".join(capitalized_sentences) |
|
|
|
def correct_tense_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: |
|
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text |
|
corrected_text.append(lemma) |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
def correct_article_errors(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.text in ['a', 'an']: |
|
next_token = token.nbor(1) |
|
if token.text == "a" and next_token.text[0].lower() in "aeiou": |
|
corrected_text.append("an") |
|
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": |
|
corrected_text.append("a") |
|
else: |
|
corrected_text.append(token.text) |
|
else: |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
def ensure_subject_verb_agreement(text): |
|
doc = nlp(text) |
|
corrected_text = [] |
|
for token in doc: |
|
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": |
|
if token.tag_ == "NN" and token.head.tag_ != "VBZ": |
|
corrected_text.append(token.head.lemma_ + "s") |
|
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": |
|
corrected_text.append(token.head.lemma_) |
|
corrected_text.append(token.text) |
|
return ' '.join(corrected_text) |
|
|
|
def correct_spelling(text): |
|
words = text.split() |
|
corrected_words = [] |
|
for word in words: |
|
corrected_word = spell.correction(word) |
|
if corrected_word is not None: |
|
corrected_words.append(corrected_word) |
|
else: |
|
corrected_words.append(word) |
|
return ' '.join(corrected_words) |
|
|
|
def paraphrase_and_correct(text): |
|
paragraphs = text.split("\n\n") |
|
|
|
|
|
processed_paragraphs = [] |
|
for paragraph in paragraphs: |
|
cleaned_text = remove_redundant_words(paragraph) |
|
plag_removed = plagiarism_removal(cleaned_text) |
|
paraphrased_text = capitalize_sentences_and_nouns(plag_removed) |
|
paraphrased_text = force_first_letter_capital(paraphrased_text) |
|
paraphrased_text = correct_article_errors(paraphrased_text) |
|
paraphrased_text = correct_tense_errors(paraphrased_text) |
|
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text) |
|
paraphrased_text = fix_possessives(paraphrased_text) |
|
paraphrased_text = correct_spelling(paraphrased_text) |
|
paraphrased_text = fix_punctuation_spacing(paraphrased_text) |
|
processed_paragraphs.append(paraphrased_text) |
|
|
|
return "\n\n".join(processed_paragraphs) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Tab("AI Detection"): |
|
t1 = gr.Textbox(lines=5, label='Text') |
|
button1 = gr.Button("π€ Predict!") |
|
label1 = gr.Textbox(lines=1, label='Predicted Label π') |
|
score1 = gr.Textbox(lines=1, label='Prob') |
|
|
|
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1]) |
|
|
|
with gr.Tab("Paraphrasing & Grammar Correction"): |
|
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction') |
|
button2 = gr.Button("π Paraphrase and Correct") |
|
result2 = gr.Textbox(lines=5, label='Corrected Text') |
|
|
|
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2) |
|
|
|
demo.launch(share=True) |
|
|