Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,238 @@
|
|
1 |
-
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Initialize
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
matches = tool.check(text)
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
+
import spacy
|
5 |
+
import subprocess
|
6 |
+
import nltk
|
7 |
+
from nltk.corpus import wordnet
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from spellchecker import SpellChecker
|
11 |
+
import re
|
12 |
+
import string
|
13 |
+
import random
|
14 |
+
from language_tool_python import LanguageTool
|
15 |
|
16 |
+
# Download necessary NLTK data
|
17 |
+
nltk.download('punkt')
|
18 |
+
nltk.download('stopwords')
|
19 |
+
nltk.download('averaged_perceptron_tagger')
|
20 |
+
nltk.download('averaged_perceptron_tagger_eng')
|
21 |
+
nltk.download('wordnet')
|
22 |
+
nltk.download('omw-1.4')
|
23 |
+
nltk.download('punkt_tab')
|
24 |
|
25 |
+
# Initialize stopwords
|
26 |
+
stop_words = set(stopwords.words("english"))
|
27 |
|
28 |
+
# Words we don't want to replace
|
29 |
+
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|
30 |
+
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
|
31 |
|
32 |
+
# Initialize the English text classification pipeline for AI detection
|
33 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
34 |
+
|
35 |
+
# Initialize the spell checker
|
36 |
+
spell = SpellChecker()
|
37 |
+
|
38 |
+
# Initialize LanguageTool
|
39 |
+
tool = LanguageTool('en-US')
|
40 |
+
|
41 |
+
# Ensure the SpaCy model is installed
|
42 |
+
try:
|
43 |
+
nlp = spacy.load("en_core_web_sm")
|
44 |
+
except OSError:
|
45 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
46 |
+
nlp = spacy.load("en_core_web_sm")
|
47 |
+
|
48 |
+
def plagiarism_removal(text):
|
49 |
+
def plagiarism_remover(word):
|
50 |
+
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
51 |
+
return word
|
52 |
+
|
53 |
+
synonyms = set()
|
54 |
+
for syn in wordnet.synsets(word):
|
55 |
+
for lemma in syn.lemmas():
|
56 |
+
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
|
57 |
+
synonyms.add(lemma.name())
|
58 |
+
|
59 |
+
pos_tag_word = nltk.pos_tag([word])[0]
|
60 |
+
|
61 |
+
if pos_tag_word[1] in exclude_tags:
|
62 |
+
return word
|
63 |
+
|
64 |
+
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
65 |
+
|
66 |
+
if not filtered_synonyms:
|
67 |
+
return word
|
68 |
+
|
69 |
+
synonym_choice = random.choice(filtered_synonyms)
|
70 |
+
|
71 |
+
if word.istitle():
|
72 |
+
return synonym_choice.title()
|
73 |
+
return synonym_choice
|
74 |
+
|
75 |
+
para_split = word_tokenize(text)
|
76 |
+
final_text = [plagiarism_remover(word) for word in para_split]
|
77 |
+
|
78 |
+
corrected_text = []
|
79 |
+
for i in range(len(final_text)):
|
80 |
+
if final_text[i] in string.punctuation and i > 0:
|
81 |
+
corrected_text[-1] += final_text[i]
|
82 |
+
else:
|
83 |
+
corrected_text.append(final_text[i])
|
84 |
+
|
85 |
+
return " ".join(corrected_text)
|
86 |
+
|
87 |
+
def predict_en(text):
|
88 |
+
res = pipeline_en(text)[0]
|
89 |
+
return res['label'], res['score']
|
90 |
+
|
91 |
+
def remove_redundant_words(text):
|
92 |
+
doc = nlp(text)
|
93 |
+
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
94 |
+
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
95 |
+
return ' '.join(filtered_text)
|
96 |
+
|
97 |
+
def fix_punctuation_spacing(text):
|
98 |
+
words = text.split(' ')
|
99 |
+
cleaned_words = []
|
100 |
+
punctuation_marks = {',', '.', "'", '!', '?', ':'}
|
101 |
+
|
102 |
+
for word in words:
|
103 |
+
if cleaned_words and word and word[0] in punctuation_marks:
|
104 |
+
cleaned_words[-1] += word
|
105 |
+
else:
|
106 |
+
cleaned_words.append(word)
|
107 |
+
|
108 |
+
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
|
109 |
+
.replace(' !', '!').replace(' ?', '?').replace(' :', ':')
|
110 |
+
|
111 |
+
def fix_possessives(text):
|
112 |
+
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
|
113 |
+
return text
|
114 |
+
|
115 |
+
def capitalize_sentences_and_nouns(text):
|
116 |
+
doc = nlp(text)
|
117 |
+
corrected_text = []
|
118 |
+
|
119 |
+
for sent in doc.sents:
|
120 |
+
sentence = []
|
121 |
+
for token in sent:
|
122 |
+
if token.i == sent.start:
|
123 |
+
sentence.append(token.text.capitalize())
|
124 |
+
elif token.pos_ == "PROPN":
|
125 |
+
sentence.append(token.text.capitalize())
|
126 |
+
else:
|
127 |
+
sentence.append(token.text)
|
128 |
+
corrected_text.append(' '.join(sentence))
|
129 |
+
|
130 |
+
return ' '.join(corrected_text)
|
131 |
+
|
132 |
+
def force_first_letter_capital(text):
|
133 |
+
sentences = re.split(r'(?<=\w[.!?])\s+', text)
|
134 |
+
capitalized_sentences = []
|
135 |
+
|
136 |
+
for sentence in sentences:
|
137 |
+
if sentence:
|
138 |
+
capitalized_sentence = sentence[0].capitalize() + sentence[1:]
|
139 |
+
if not re.search(r'[.!?]$', capitalized_sentence):
|
140 |
+
capitalized_sentence += '.'
|
141 |
+
capitalized_sentences.append(capitalized_sentence)
|
142 |
+
|
143 |
+
return " ".join(capitalized_sentences)
|
144 |
+
|
145 |
+
def correct_tense_errors(text):
|
146 |
+
doc = nlp(text)
|
147 |
+
corrected_text = []
|
148 |
+
for token in doc:
|
149 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
150 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
151 |
+
corrected_text.append(lemma)
|
152 |
+
else:
|
153 |
+
corrected_text.append(token.text)
|
154 |
+
return ' '.join(corrected_text)
|
155 |
+
|
156 |
+
def correct_article_errors(text):
|
157 |
+
doc = nlp(text)
|
158 |
+
corrected_text = []
|
159 |
+
for token in doc:
|
160 |
+
if token.text in ['a', 'an']:
|
161 |
+
next_token = token.nbor(1)
|
162 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
163 |
+
corrected_text.append("an")
|
164 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
165 |
+
corrected_text.append("a")
|
166 |
+
else:
|
167 |
+
corrected_text.append(token.text)
|
168 |
+
else:
|
169 |
+
corrected_text.append(token.text)
|
170 |
+
return ' '.join(corrected_text)
|
171 |
+
|
172 |
+
def ensure_subject_verb_agreement(text):
|
173 |
+
doc = nlp(text)
|
174 |
+
corrected_text = []
|
175 |
+
for token in doc:
|
176 |
+
if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
|
177 |
+
if token.tag_ == "NN" and token.head.tag_ != "VBZ":
|
178 |
+
corrected_text.append(token.head.lemma_ + "s")
|
179 |
+
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
|
180 |
+
corrected_text.append(token.head.lemma_)
|
181 |
+
corrected_text.append(token.text)
|
182 |
+
return ' '.join(corrected_text)
|
183 |
+
|
184 |
+
def correct_spelling(text):
|
185 |
+
words = text.split()
|
186 |
+
corrected_words = []
|
187 |
+
for word in words:
|
188 |
+
corrected_word = spell.correction(word)
|
189 |
+
if corrected_word is not None:
|
190 |
+
corrected_words.append(corrected_word)
|
191 |
+
else:
|
192 |
+
corrected_words.append(word)
|
193 |
+
return ' '.join(corrected_words)
|
194 |
+
|
195 |
+
def grammar_check(text):
|
196 |
matches = tool.check(text)
|
197 |
+
corrected_text = language_tool_python.utils.correct(text, matches)
|
198 |
+
return corrected_text
|
199 |
+
|
200 |
+
def paraphrase_and_correct(text):
|
201 |
+
cleaned_text = remove_redundant_words(text)
|
202 |
+
plag_removed = plagiarism_removal(cleaned_text)
|
203 |
+
paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
|
204 |
+
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
205 |
+
paraphrased_text = correct_article_errors(paraphrased_text)
|
206 |
+
paraphrased_text = correct_tense_errors(paraphrased_text)
|
207 |
+
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
208 |
+
paraphrased_text = fix_possessives(paraphrased_text)
|
209 |
+
paraphrased_text = correct_spelling(paraphrased_text)
|
210 |
+
paraphrased_text = fix_punctuation_spacing(paraphrased_text)
|
211 |
+
paraphrased_text = grammar_check(paraphrased_text)
|
212 |
+
|
213 |
+
return paraphrased_text
|
214 |
+
|
215 |
+
with gr.Blocks() as demo:
|
216 |
+
with gr.Tab("AI Detection"):
|
217 |
+
t1 = gr.Textbox(lines=5, label='Text')
|
218 |
+
button1 = gr.Button("π€ Predict!")
|
219 |
+
label1 = gr.Textbox(lines=1, label='Predicted Label π')
|
220 |
+
score1 = gr.Textbox(lines=1, label='Prob')
|
221 |
+
|
222 |
+
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
223 |
+
|
224 |
+
with gr.Tab("Paraphrasing & Grammar Correction"):
|
225 |
+
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
|
226 |
+
button2 = gr.Button("π Paraphrase and Correct")
|
227 |
+
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
228 |
+
|
229 |
+
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
230 |
+
|
231 |
+
if __name__ == "__main__":
|
232 |
+
try:
|
233 |
+
subprocess.run(["java", "-version"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
|
234 |
+
except FileNotFoundError:
|
235 |
+
print("Java is not installed. Please install Java to use LanguageTool.")
|
236 |
+
exit(1)
|
237 |
+
|
238 |
+
demo.launch(share=True)
|