Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,33 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Download necessary NLTK data
|
16 |
-
nltk.download('punkt')
|
17 |
-
nltk.download('stopwords')
|
18 |
-
nltk.download('averaged_perceptron_tagger')
|
19 |
-
nltk.download('averaged_perceptron_tagger_eng')
|
20 |
-
nltk.download('wordnet')
|
21 |
-
nltk.download('omw-1.4')
|
22 |
-
nltk.download('punkt_tab')
|
23 |
-
|
24 |
-
# Initialize stopwords
|
25 |
-
stop_words = set(stopwords.words("english"))
|
26 |
-
|
27 |
-
# Words we don't want to replace
|
28 |
-
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|
29 |
-
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
|
30 |
-
|
31 |
-
# Initialize the English text classification pipeline for AI detection
|
32 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
33 |
-
|
34 |
-
# Initialize the spell checker
|
35 |
-
spell = SpellChecker()
|
36 |
-
|
37 |
-
# Ensure the SpaCy model is installed
|
38 |
-
try:
|
39 |
-
nlp = spacy.load("en_core_web_sm")
|
40 |
-
except OSError:
|
41 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
42 |
-
nlp = spacy.load("en_core_web_sm")
|
43 |
-
|
44 |
-
def plagiarism_removal(text):
|
45 |
-
def plagiarism_remover(word):
|
46 |
-
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
47 |
-
return word
|
48 |
-
|
49 |
-
# Find synonyms
|
50 |
-
synonyms = set()
|
51 |
-
for syn in wordnet.synsets(word):
|
52 |
-
for lemma in syn.lemmas():
|
53 |
-
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
|
54 |
-
synonyms.add(lemma.name())
|
55 |
-
|
56 |
-
pos_tag_word = nltk.pos_tag([word])[0]
|
57 |
-
|
58 |
-
if pos_tag_word[1] in exclude_tags:
|
59 |
-
return word
|
60 |
-
|
61 |
-
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
62 |
-
|
63 |
-
if not filtered_synonyms:
|
64 |
-
return word
|
65 |
-
|
66 |
-
synonym_choice = random.choice(filtered_synonyms)
|
67 |
-
|
68 |
-
if word.istitle():
|
69 |
-
return synonym_choice.title()
|
70 |
-
return synonym_choice
|
71 |
-
|
72 |
-
para_split = word_tokenize(text)
|
73 |
-
final_text = [plagiarism_remover(word) for word in para_split]
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
paraphrased_text = correct_article_errors(paraphrased_text)
|
95 |
-
paraphrased_text = correct_tense_errors(paraphrased_text)
|
96 |
-
paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
|
97 |
-
paraphrased_text = fix_possessives(paraphrased_text)
|
98 |
-
paraphrased_text = correct_spelling(paraphrased_text)
|
99 |
-
paraphrased_text = fix_punctuation_spacing(paraphrased_text)
|
100 |
-
processed_paragraphs.append(paraphrased_text)
|
101 |
-
|
102 |
-
return "\n\n".join(processed_paragraphs) # Reassemble the text with paragraphs
|
103 |
-
|
104 |
-
# Gradio app setup
|
105 |
-
with gr.Blocks() as demo:
|
106 |
-
with gr.Tab("AI Detection"):
|
107 |
-
t1 = gr.Textbox(lines=5, label='Text')
|
108 |
-
button1 = gr.Button("π€ Predict!")
|
109 |
-
label1 = gr.Textbox(lines=1, label='Predicted Label π')
|
110 |
-
score1 = gr.Textbox(lines=1, label='Prob')
|
111 |
-
|
112 |
-
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
113 |
-
|
114 |
-
with gr.Tab("Paraphrasing & Grammar Correction"):
|
115 |
-
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
|
116 |
-
button2 = gr.Button("π Paraphrase and Correct")
|
117 |
-
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
118 |
-
|
119 |
-
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
120 |
-
|
121 |
-
demo.launch(share=True)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
|
5 |
+
# Load the grammar correction model
|
6 |
+
model_name = "microsoft/deberta-v3-base"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Function to correct grammar
|
11 |
+
def correct_grammar(text):
|
12 |
+
# Encode input text
|
13 |
+
inputs = tokenizer.encode(text, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Generate the corrected text
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model.generate(inputs, max_length=512, num_beams=5, early_stopping=True)
|
18 |
+
|
19 |
+
# Decode the corrected text
|
20 |
+
corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
return corrected_text
|
22 |
+
|
23 |
+
# Gradio Interface
|
24 |
+
interface = gr.Interface(
|
25 |
+
fn=correct_grammar,
|
26 |
+
inputs="text",
|
27 |
+
outputs="text",
|
28 |
+
title="Grammar Correction",
|
29 |
+
description="Enter a sentence or paragraph to receive grammar corrections using DeBERTa."
|
30 |
+
)
|
31 |
+
|
32 |
+
if __name__ == "__main__":
|
33 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|