Shujaat Ali commited on
Commit
ea28e08
·
verified ·
1 Parent(s): 52b2b32

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -45
app.py CHANGED
@@ -3,14 +3,15 @@ import gradio as gr
3
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
4
  import torch
5
  import nltk
 
 
6
  import spacy
7
- from nltk.corpus import wordnet
8
- import subprocess
9
 
10
  # Download NLTK data (if not already downloaded)
11
  nltk.download('punkt')
12
  nltk.download('stopwords')
13
- nltk.download('wordnet') # Download WordNet
14
 
15
  # Download spaCy model if not already installed
16
  try:
@@ -30,39 +31,97 @@ model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-unca
30
  paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase")
31
  paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device)
32
 
33
- # Function to find synonyms using WordNet via NLTK
34
- def get_synonyms(word):
35
- synonyms = set()
36
- for syn in wordnet.synsets(word):
37
- for lemma in syn.lemmas():
38
- synonyms.add(lemma.name())
39
- return list(synonyms)
40
 
41
- # Replace words with synonyms using spaCy and WordNet
42
- def replace_with_synonyms(text):
43
  doc = nlp(text)
44
- processed_text = []
45
  for token in doc:
46
- synonyms = get_synonyms(token.text.lower())
47
- if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}: # Only replace certain types of words
48
- replacement = synonyms[0] # Replace with the first synonym
49
- if token.is_title:
50
- replacement = replacement.capitalize()
51
- processed_text.append(replacement)
 
52
  else:
53
- processed_text.append(token.text)
54
- return " ".join(processed_text)
55
 
56
- # AI detection function using DistilBERT
57
- def detect_ai_generated(text):
58
- inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
59
- with torch.no_grad():
60
- outputs = model(**inputs)
61
- probabilities = torch.softmax(outputs.logits, dim=1)
62
- ai_probability = probabilities[0][1].item() # Probability of being AI-generated
63
- return ai_probability
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
- # Humanize the AI-detected text using the SRDdev Paraphrase model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  def humanize_text(AI_text):
67
  paragraphs = AI_text.split("\n")
68
  paraphrased_paragraphs = []
@@ -71,36 +130,38 @@ def humanize_text(AI_text):
71
  inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
72
  paraphrased_ids = paraphrase_model.generate(
73
  inputs['input_ids'],
74
- max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length
75
- num_beams=4,
76
  early_stopping=True,
77
- length_penalty=1.0,
78
- no_repeat_ngram_size=3,
 
 
 
79
  )
80
  paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
81
  paraphrased_paragraphs.append(paraphrased_text)
82
  return "\n\n".join(paraphrased_paragraphs)
83
 
84
- # Main function to handle the overall process
85
  def main_function(AI_text):
86
- # Replace words with synonyms
87
- text_with_synonyms = replace_with_synonyms(AI_text)
88
-
89
- # Detect AI-generated content
90
- ai_probability = detect_ai_generated(text_with_synonyms)
91
 
92
- # Humanize AI text
93
- humanized_text = humanize_text(text_with_synonyms)
 
94
 
95
- return f"AI-Generated Content: {ai_probability:.2f}%\n\nHumanized Text:\n{humanized_text}"
96
 
97
  # Gradio interface definition
98
  interface = gr.Interface(
99
  fn=main_function,
100
  inputs="textbox",
101
  outputs="textbox",
102
- title="AI Text Humanizer with Synonym Replacement",
103
- description="Enter AI-generated text and get a human-written version, with synonyms replaced for more natural output. This space uses models from Hugging Face directly."
104
  )
105
 
106
  # Launch the Gradio app
 
3
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration
4
  import torch
5
  import nltk
6
+ import random
7
+ import string
8
  import spacy
9
+ import subprocess # Import subprocess for downloading spaCy models
 
10
 
11
  # Download NLTK data (if not already downloaded)
12
  nltk.download('punkt')
13
  nltk.download('stopwords')
14
+ nltk.download('wordnet') # Download WordNet for enhanced synonym lookup
15
 
16
  # Download spaCy model if not already installed
17
  try:
 
31
  paraphrase_tokenizer = T5Tokenizer.from_pretrained("SRDdev/Paraphrase")
32
  paraphrase_model = T5ForConditionalGeneration.from_pretrained("SRDdev/Paraphrase").to(device)
33
 
34
+ # AI detection function using DistilBERT with batch processing
35
+ def detect_ai_generated(texts):
36
+ inputs = tokenizer(texts, return_tensors="pt", truncation=True, max_length=512, padding=True).to(device)
37
+ with torch.no_grad():
38
+ outputs = model(**inputs)
39
+ probabilities = torch.softmax(outputs.logits, dim=1)[:, 1].cpu().tolist() # List of AI-generated probabilities
40
+ return probabilities
41
 
42
+ # Synonym replacement using spaCy
43
+ def replace_with_synonyms(text, probability=0.3):
44
  doc = nlp(text)
45
+ new_text = []
46
  for token in doc:
47
+ if random.random() < probability and token.pos_ in ("NOUN", "VERB", "ADJ", "ADV"):
48
+ synonyms = [synonym.lemma_ for synonym in token.vocab if synonym.is_lower == token.is_lower]
49
+ if synonyms:
50
+ new_word = random.choice(synonyms)
51
+ new_text.append(new_word)
52
+ else:
53
+ new_text.append(token.text)
54
  else:
55
+ new_text.append(token.text)
56
+ return " ".join(new_text)
57
 
58
+ # Random text transformations to simulate human-like errors
59
+ def random_capitalize(word):
60
+ if word.isalpha() and random.random() < 0.1:
61
+ return word.capitalize()
62
+ return word
63
+
64
+ def random_remove_punctuation(text):
65
+ if random.random() < 0.2:
66
+ text = list(text)
67
+ indices = [i for i, c in enumerate(text) if c in string.punctuation]
68
+ if indices:
69
+ remove_indices = random.sample(indices, min(3, len(indices)))
70
+ for idx in sorted(remove_indices, reverse=True):
71
+ text.pop(idx)
72
+ return ''.join(text)
73
+ return text
74
+
75
+ def random_double_period(text):
76
+ if random.random() < 0.2:
77
+ text = text.replace('.', '..', 3)
78
+ return text
79
 
80
+ def random_double_space(text):
81
+ if random.random() < 0.2:
82
+ words = text.split()
83
+ for _ in range(min(3, len(words) - 1)):
84
+ idx = random.randint(0, len(words) - 2)
85
+ words[idx] += ' '
86
+ return ' '.join(words)
87
+ return text
88
+
89
+ def random_replace_comma_space(text, period_replace_percentage=0.33):
90
+ comma_occurrences = text.count(", ")
91
+ period_occurrences = text.count(". ")
92
+ replace_count_comma = max(1, comma_occurrences // 3)
93
+ replace_count_period = max(1, period_occurrences // 3)
94
+ comma_indices = [i for i in range(len(text)) if text.startswith(", ", i)]
95
+ period_indices = [i for i in range(len(text)) if text.startswith(". ", i)]
96
+ replace_indices_comma = random.sample(comma_indices, min(replace_count_comma, len(comma_indices)))
97
+ replace_indices_period = random.sample(period_indices, min(replace_count_period, len(period_indices)))
98
+ for idx in sorted(replace_indices_comma + replace_indices_period, reverse=True):
99
+ if text.startswith(", ", idx):
100
+ text = text[:idx] + " ," + text[idx + 2:]
101
+ if text.startswith(". ", idx):
102
+ text = text[:idx] + " ." + text[idx + 2:]
103
+ return text
104
+
105
+ def transform_paragraph(paragraph):
106
+ words = paragraph.split()
107
+ if len(words) > 12:
108
+ words = [random_capitalize(word) for word in words]
109
+ transformed_paragraph = ' '.join(words)
110
+ transformed_paragraph = random_remove_punctuation(transformed_paragraph)
111
+ transformed_paragraph = random_double_period(transformed_paragraph)
112
+ transformed_paragraph = random_double_space(transformed_paragraph)
113
+ transformed_paragraph = random_replace_comma_space(transformed_paragraph)
114
+ transformed_paragraph = replace_with_synonyms(transformed_paragraph) # Use spaCy for synonyms
115
+ else:
116
+ transformed_paragraph = paragraph
117
+ return transformed_paragraph
118
+
119
+ def transform_text(text):
120
+ paragraphs = text.split('\n')
121
+ transformed_paragraphs = [transform_paragraph(paragraph) for paragraph in paragraphs]
122
+ return '\n'.join(transformed_paragraphs)
123
+
124
+ # Humanize the AI-detected text using the SRDdev Paraphrase model with optimized parameters
125
  def humanize_text(AI_text):
126
  paragraphs = AI_text.split("\n")
127
  paraphrased_paragraphs = []
 
130
  inputs = paraphrase_tokenizer(paragraph, return_tensors="pt", max_length=512, truncation=True).to(device)
131
  paraphrased_ids = paraphrase_model.generate(
132
  inputs['input_ids'],
133
+ max_length=inputs['input_ids'].shape[-1] + 20,
134
+ num_beams=2, # Reduced beam size for speed
135
  early_stopping=True,
136
+ length_penalty=0.8, # Lower penalty to generate faster
137
+ no_repeat_ngram_size=2, # Reduced for performance
138
+ do_sample=True, # Enable sampling to add randomness
139
+ top_k=50, # Top-k sampling
140
+ top_p=0.95, # Top-p (nucleus) sampling
141
  )
142
  paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True)
143
  paraphrased_paragraphs.append(paraphrased_text)
144
  return "\n\n".join(paraphrased_paragraphs)
145
 
146
+ # Main function to handle the overall process with batch processing
147
  def main_function(AI_text):
148
+ sentences = nltk.sent_tokenize(AI_text)
149
+ ai_probabilities = detect_ai_generated(sentences)
150
+ ai_generated_percentage = sum([1 for prob in ai_probabilities if prob > 0.5]) / len(ai_probabilities) * 100
 
 
151
 
152
+ # Transform AI text to make it more human-like
153
+ humanized_text = humanize_text(AI_text)
154
+ humanized_text = transform_text(humanized_text) # Add randomness to simulate human errors
155
 
156
+ return f"AI-Generated Content: {ai_generated_percentage:.2f}%\n\nHumanized Text:\n{humanized_text}"
157
 
158
  # Gradio interface definition
159
  interface = gr.Interface(
160
  fn=main_function,
161
  inputs="textbox",
162
  outputs="textbox",
163
+ title="AI Text Humanizer",
164
+ description="Enter AI-generated text and get a human-written version. This space uses models from Hugging Face directly."
165
  )
166
 
167
  # Launch the Gradio app