File size: 10,000 Bytes
0f2a23a
e4351cc
0f2a23a
 
db75140
0f2a23a
 
bf4908b
 
7c41997
e4351cc
0f2a23a
 
e4351cc
bf4908b
 
7c41997
0f2a23a
bf4908b
0f2a23a
 
 
486bbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c41997
486bbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c41997
486bbd6
 
 
 
 
 
7c41997
486bbd6
 
 
 
 
 
 
 
7c41997
486bbd6
 
 
 
7c41997
486bbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c41997
 
 
 
 
 
 
486bbd6
7c41997
486bbd6
 
7c41997
 
 
 
486bbd6
7c41997
486bbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c41997
486bbd6
 
7c41997
486bbd6
7c41997
486bbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c41997
 
 
 
 
 
486bbd6
 
 
 
 
 
7c41997
 
 
 
486bbd6
7c41997
486bbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c41997
486bbd6
7c41997
 
486bbd6
 
7c41997
 
 
 
 
 
 
486bbd6
 
7c41997
 
bf4908b
7c41997
0f2a23a
7c41997
a1d4c88
 
7c41997
 
 
 
 
 
 
a1d4c88
7c41997
bf4908b
a1d4c88
7c41997
 
 
 
bf4908b
0f2a23a
7c41997
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re
from inflect import engine  # For pluralization

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()
inflect_engine = engine()

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas if lemma.name() != word]  # Avoid original word
    return []

# Function to remove redundant and meaningless words
def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to correct tense errors in a sentence
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB":
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct singular/plural errors using inflect
def correct_singular_plural_errors(text):
    doc = nlp(text)
    corrected_text = []
    
    for token in doc:
        if token.pos_ == "NOUN":
            if token.tag_ == "NN":  # Singular noun
                if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
                    corrected_text.append(inflect_engine.plural(token.lemma_))
                else:
                    corrected_text.append(token.text)
            elif token.tag_ == "NNS":  # Plural noun
                if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
                    corrected_text.append(inflect_engine.singular_noun(token.text) or token.text)
                else:
                    corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    
    return ' '.join(corrected_text)

# Function to check and correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to get the correct synonym while maintaining verb form
def replace_with_synonym(token):
    pos = {
        "VERB": wordnet.VERB,
        "NOUN": wordnet.NOUN,
        "ADJ": wordnet.ADJ,
        "ADV": wordnet.ADV
    }.get(token.pos_, None)

    synonyms = get_synonyms_nltk(token.lemma_, pos)

    if synonyms:
        synonym = synonyms[0]
        if token.tag_ == "VBG":  # Present participle
            synonym += 'ing'
        elif token.tag_ in {"VBD", "VBN"}:  # Past tense or past participle
            synonym += 'ed'
        elif token.tag_ == "VBZ":  # Third-person singular present
            synonym += 's'
        return synonym
    return token.text

# Function to check for and avoid double negatives
def correct_double_negatives(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children):
            corrected_text.append("always")
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        corrected_text.append(token.text)
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":  # Singular noun, should use singular verb
                corrected_text[-1] = token.head.lemma_ + "s"
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":  # Plural noun, should not use singular verb
                corrected_text[-1] = token.head.lemma_
    return ' '.join(corrected_text)

# Function to correct spelling errors
def correct_spelling(text):
    words = text.split()
    corrected_words = []
    for word in words:
        corrected_word = spell.correction(word)
        corrected_words.append(corrected_word if corrected_word else word)  # Keep original if correction is None
    return ' '.join(corrected_words)

# Function to correct punctuation issues
def correct_punctuation(text):
    text = re.sub(r'\s+([?.!,";:])', r'\1', text)  # Remove space before punctuation
    text = re.sub(r'([?.!,";:])\s+', r'\1 ', text)  # Ensure a single space after punctuation
    return text

# Function to ensure correct handling of possessive forms
def handle_possessives(text):
    text = re.sub(r"\b(\w+)'s\b", r"\1's", text)  # Preserve possessive forms
    return text

# Function to rephrase text and replace words with their synonyms while maintaining form
def rephrase_with_synonyms(text):
    doc = nlp(text)
    rephrased_text = []

    for token in doc:
        if token.pos_ == "NOUN" and token.text.lower() == "earth":
            rephrased_text.append("Earth")
            continue
        
        pos_tag = {
            "NOUN": wordnet.NOUN,
            "VERB": wordnet.VERB,
            "ADJ": wordnet.ADJ,
            "ADV": wordnet.ADV
        }.get(token.pos_, None)
        
        if pos_tag:
            synonyms = get_synonyms_nltk(token.lemma_, pos_tag)
            if synonyms:
                synonym = synonyms[0]  # Just using the first synonym for simplicity
                if token.pos_ == "VERB":
                    if token.tag_ == "VBG":  # Present participle
                        synonym += 'ing'
                    elif token.tag_ in {"VBD", "VBN"}:  # Past tense or past participle
                        synonym += 'ed'
                    elif token.tag_ == "VBZ":  # Third-person singular present
                        synonym += 's'
                rephrased_text.append(synonym)
            else:
                rephrased_text.append(token.text)
        else:
            rephrased_text.append(token.text)

    return ' '.join(rephrased_text)

# Function to paraphrase and correct grammar with enhanced accuracy
def paraphrase_and_correct(text):
    # Remove meaningless or redundant words first
    cleaned_text = remove_redundant_words(text)
    
    # Capitalize sentences and nouns
    paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)

    # Correct tense and singular/plural errors
    paraphrased_text = correct_tense_errors(paraphrased_text)
    paraphrased_text = correct_singular_plural_errors(paraphrased_text)
    paraphrased_text = correct_article_errors(paraphrased_text)

    # Correct spelling errors
    paraphrased_text = correct_spelling(paraphrased_text)

    # Correct punctuation issues
    paraphrased_text = correct_punctuation(paraphrased_text)

    # Handle possessives
    paraphrased_text = handle_possessives(paraphrased_text)

    # Ensure subject-verb agreement
    paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)

    # Replace with synonyms
    paraphrased_text = rephrase_with_synonyms(paraphrased_text)

    # Correct for double negatives
    paraphrased_text = correct_double_negatives(paraphrased_text)

    return paraphrased_text

# Function to handle the user interface
def process_text(input_text):
    ai_label, ai_score = predict_en(input_text)
    ai_result = f"AI Detected: {ai_label} (Score: {ai_score:.2f})"

    if ai_label == "HUMAN":
        corrected_text = paraphrase_and_correct(input_text)
        return corrected_text, ai_result
    else:
        return "The text seems to be AI-generated; no correction applied.", ai_result

# Gradio interface
iface = gr.Interface(
    fn=process_text,
    inputs=gr.Textbox(lines=10, placeholder="Enter your text here..."),
    outputs=[gr.Textbox(label="Corrected Text"), gr.Textbox(label="AI Detection Result")],
    title="Text Correction and AI Detection",
    description="This app corrects grammar, spelling, and punctuation while also detecting AI-generated content."
)

# Launch the interface
iface.launch()