File size: 7,248 Bytes
cfaf614
2fc5fd9
cfaf614
 
 
 
 
 
dd84c16
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd84c16
cfaf614
d89cee9
 
 
 
 
 
 
a69899f
d89cee9
a69899f
d89cee9
 
 
dd84c16
 
 
 
cfaf614
 
dd84c16
cfaf614
 
 
 
 
 
 
a69899f
cfaf614
a69899f
cfaf614
 
 
 
 
 
 
92857f5
dd84c16
a69899f
9b2901c
92857f5
9b2901c
92857f5
 
 
 
 
 
 
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69899f
cfaf614
a69899f
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
a69899f
cfaf614
 
a69899f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd84c16
cfaf614
 
 
dd84c16
cfaf614
 
 
dd84c16
cfaf614
fe589d8
a69899f
fe589d8
cfaf614
 
dd84c16
cfaf614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd84c16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from spellchecker import SpellChecker
import re

# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")

# Initialize the spell checker
spell = SpellChecker()

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
    res = pipeline_en(text)[0]
    return res['label'], res['score']

# Function to remove redundant and meaningless words
def remove_redundant_words(text):
    doc = nlp(text)
    meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
    filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
    return ' '.join(filtered_text)

# Function to fix spacing before punctuation
def fix_punctuation_spacing(text):
    # Split the text into words and punctuation
    words = text.split(' ')
    cleaned_words = []
    punctuation_marks = {',', '.', "'", '!', '?', ':'}

    for word in words:
        if cleaned_words and word and word[0] in punctuation_marks:
            cleaned_words[-1] += word
        else:
            cleaned_words.append(word)

    return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
                                    .replace(' !', '!').replace(' ?', '?').replace(' :', ':')

# Function to fix possessives like "Earth's"
def fix_possessives(text):
    text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
    return text

# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Function to force capitalization of the first letter of every sentence and ensure full stops
def force_first_letter_capital(text):
    sentences = re.split(r'(?<=\w[.!?])\s+', text)
    capitalized_sentences = []
    
    for sentence in sentences:
        if sentence:
            capitalized_sentence = sentence[0].capitalize() + sentence[1:]
            if not re.search(r'[.!?]$', capitalized_sentence):
                capitalized_sentence += '.'
            capitalized_sentences.append(capitalized_sentence)
    
    return " ".join(capitalized_sentences)

# Function to correct tense errors in a sentence
def correct_tense_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
            lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
            corrected_text.append(lemma)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to check and correct article errors
def correct_article_errors(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.text in ['a', 'an']:
            next_token = token.nbor(1)
            if token.text == "a" and next_token.text[0].lower() in "aeiou":
                corrected_text.append("an")
            elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
                corrected_text.append("a")
            else:
                corrected_text.append(token.text)
        else:
            corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to ensure subject-verb agreement
def ensure_subject_verb_agreement(text):
    doc = nlp(text)
    corrected_text = []
    for token in doc:
        if token.dep_ == "nsubj" and token.head.pos_ == "VERB":
            if token.tag_ == "NN" and token.head.tag_ != "VBZ":
                corrected_text.append(token.head.lemma_ + "s")
            elif token.tag_ == "NNS" and token.head.tag_ == "VBZ":
                corrected_text.append(token.head.lemma_)
        corrected_text.append(token.text)
    return ' '.join(corrected_text)

# Function to correct spelling errors
def correct_spelling(text):
    words = text.split()
    corrected_words = []
    for word in words:
        corrected_word = spell.correction(word)
        if corrected_word is not None:
            corrected_words.append(corrected_word)
        else:
            corrected_words.append(word)
    return ' '.join(corrected_words)

# Function to replace a word with its synonym
def replace_with_synonyms(text):
    words = text.split()
    replaced_words = []

    for word in words:
        synonyms = wordnet.synsets(word)
        if synonyms:
            # Take the first synonym if available
            synonym = synonyms[0].lemmas()[0].name()
            # Replace the word with its synonym if it's different
            if synonym.lower() != word.lower():
                replaced_words.append(synonym.replace('_', ' '))
            else:
                replaced_words.append(word)
        else:
            replaced_words.append(word)

    return ' '.join(replaced_words)

# Main function for paraphrasing and grammar correction
def paraphrase_and_correct(text):
    cleaned_text = remove_redundant_words(text)
    paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
    paraphrased_text = force_first_letter_capital(paraphrased_text)
    paraphrased_text = correct_article_errors(paraphrased_text)
    paraphrased_text = correct_tense_errors(paraphrased_text)
    paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
    paraphrased_text = fix_possessives(paraphrased_text)
    paraphrased_text = correct_spelling(paraphrased_text)
    paraphrased_text = fix_punctuation_spacing(paraphrased_text)
    paraphrased_text = replace_with_synonyms(paraphrased_text)  # Add synonym replacement here

    return paraphrased_text

# Gradio app setup
with gr.Blocks() as demo:
    with gr.Tab("AI Detection"):
        t1 = gr.Textbox(lines=5, label='Text')
        button1 = gr.Button("πŸ€– Predict!")
        label1 = gr.Textbox(lines=1, label='Predicted Label πŸŽƒ')
        score1 = gr.Textbox(lines=1, label='Prob')

        button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])

    with gr.Tab("Paraphrasing & Grammar Correction"):
        t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
        button2 = gr.Button("πŸ”„ Paraphrase and Correct")
        result2 = gr.Textbox(lines=5, label='Corrected Text')

        button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)

demo.launch(share=True)