Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from spellchecker import SpellChecker | |
import re | |
import inflect | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
print("Downloading spaCy model...") | |
spacy.cli.download("en_core_web_sm") | |
nlp = spacy.load("en_core_web_sm") | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Initialize the spell checker | |
spell = SpellChecker() | |
# Initialize the inflect engine for pluralization | |
inflect_engine = inflect.engine() | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Load the SpaCy model | |
nlp = spacy.load("en_core_web_sm") | |
# Function to predict the label and score for English text (AI Detection) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Function to get synonyms using NLTK WordNet | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas if lemma.name() != word] | |
return [] | |
# Function to remove redundant and meaningless words | |
def remove_redundant_words(text): | |
doc = nlp(text) | |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} | |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] | |
return ' '.join(filtered_text) | |
# Function to capitalize the first letter of sentences and proper nouns | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Function to correct tense errors in a sentence | |
def correct_tense_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: | |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
corrected_text.append(lemma) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct singular/plural errors | |
def correct_singular_plural_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN": | |
if token.tag_ == "NN": # Singular noun | |
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): | |
corrected_text.append(inflect_engine.plural(token.lemma_)) | |
else: | |
corrected_text.append(token.text) | |
elif token.tag_ == "NNS": # Plural noun | |
if any(child.text.lower() in ['a', 'one'] for child in token.head.children): | |
corrected_text.append(inflect_engine.singular_noun(token.text) or token.text) | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to check and correct article errors | |
def correct_article_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text in ['a', 'an']: | |
next_token = token.nbor(1) | |
if token.text == "a" and next_token.text[0].lower() in "aeiou": | |
corrected_text.append("an") | |
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": | |
corrected_text.append("a") | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to get the correct synonym while maintaining verb form | |
def replace_with_synonym(token): | |
pos = None | |
if token.pos_ == "VERB": | |
pos = wordnet.VERB | |
elif token.pos_ == "NOUN": | |
pos = wordnet.NOUN | |
elif token.pos_ == "ADJ": | |
pos = wordnet.ADJ | |
elif token.pos_ == "ADV": | |
pos = wordnet.ADV | |
synonyms = get_synonyms_nltk(token.lemma_, pos) | |
if synonyms: | |
synonym = synonyms[0] | |
if token.tag_ == "VBG": # Present participle (e.g., running) | |
synonym = synonym + 'ing' | |
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle | |
synonym = synonym + 'ed' | |
elif token.tag_ == "VBZ": # Third-person singular present | |
synonym = synonym + 's' | |
return synonym | |
return token.text | |
# Function to check for and avoid double negatives | |
def correct_double_negatives(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text.lower() == "not" and any(child.text.lower() == "never" for child in token.head.children): | |
corrected_text.append("always") | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to ensure subject-verb agreement | |
def ensure_subject_verb_agreement(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.dep_ == "nsubj" and token.head.pos_ == "VERB": | |
if token.tag_ == "NN" and token.head.tag_ != "VBZ": # Singular noun, should use singular verb | |
corrected_text.append(token.head.lemma_ + "s") | |
elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": # Plural noun, should not use singular verb | |
corrected_text.append(token.head.lemma_) | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct spelling errors | |
def correct_spelling(text): | |
words = text.split() | |
corrected_words = [] | |
for word in words: | |
corrected_word = spell.correction(word) | |
corrected_words.append(corrected_word if corrected_word else word) | |
return ' '.join(corrected_words) | |
# Function to correct punctuation issues | |
def correct_punctuation(text): | |
text = re.sub(r'\s+([?.!,";:])', r'\1', text) | |
text = re.sub(r'([?.!,";:])\s+', r'\1 ', text) | |
return text | |
# Function to ensure correct handling of possessive forms | |
def handle_possessives(text): | |
text = re.sub(r"\b(\w+)'s\b", r"\1's", text) | |
return text | |
# Function to rephrase text and replace words with their synonyms while maintaining form | |
def rephrase_with_synonyms(text): | |
doc = nlp(text) | |
rephrased_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN" and token.text.lower() == "earth": | |
rephrased_text.append("Earth") | |
continue | |
pos_tag = None | |
if token.pos_ == "NOUN": | |
pos_tag = wordnet.NOUN | |
elif token.pos_ == "VERB": | |
pos_tag = wordnet.VERB | |
elif token.pos_ == "ADJ": | |
pos_tag = wordnet.ADJ | |
elif token.pos_ == "ADV": | |
pos_tag = wordnet.ADV | |
if pos_tag: | |
synonyms = get_synonyms_nltk(token.lemma_, pos_tag) | |
if synonyms: | |
synonym = synonyms[0] # Just using the first synonym for simplicity | |
if token.pos_ == "VERB": | |
if token.tag_ == "VBG": # Present participle (e.g., running) | |
synonym = synonym + 'ing' | |
elif token.tag_ == "VBD" or token.tag_ == "VBN": # Past tense or past participle | |
synonym = synonym + 'ed' | |
elif token.tag_ == "VBZ": # Third-person singular present | |
synonym = synonym + 's' | |
rephrased_text.append(synonym) | |
else: | |
rephrased_text.append(token.text) | |
else: | |
rephrased_text.append(token.text) | |
return ' '.join(rephrased_text) | |
# Function to paraphrase and correct grammar with enhanced accuracy | |
def paraphrase_and_correct(text): | |
# Remove meaningless or redundant words first | |
cleaned_text = remove_redundant_words(text) | |
# Capitalize sentences and proper nouns | |
cleaned_text = capitalize_sentences_and_nouns(cleaned_text) | |
# Correct tense errors | |
cleaned_text = correct_tense_errors(cleaned_text) | |
# Correct singular/plural errors | |
cleaned_text = correct_singular_plural_errors(cleaned_text) | |
# Correct article errors | |
cleaned_text = correct_article_errors(cleaned_text) | |
# Correct spelling | |
cleaned_text = correct_spelling(cleaned_text) | |
# Correct punctuation issues | |
cleaned_text = correct_punctuation(cleaned_text) | |
# Handle possessives | |
cleaned_text = handle_possessives(cleaned_text) | |
# Replace words with synonyms | |
cleaned_text = rephrase_with_synonyms(cleaned_text) | |
# Correct double negatives | |
cleaned_text = correct_double_negatives(cleaned_text) | |
# Ensure subject-verb agreement | |
cleaned_text = ensure_subject_verb_agreement(cleaned_text) | |
return cleaned_text | |
# Function to detect AI-generated content | |
def detect_ai(text): | |
label, score = predict_en(text) | |
return label, score | |
def gradio_interface(text): | |
label, score = detect_ai(text) | |
corrected_text = paraphrase_and_correct(text) | |
return {label: score}, corrected_text | |
# Modify the Gradio interface setup | |
iface = gr.Interface( | |
fn=gradio_interface, | |
inputs=gr.Textbox(lines=5, placeholder="Enter text here..."), | |
outputs=[ | |
gr.Label(num_top_classes=1), | |
gr.Textbox(label="Corrected Text") | |
], | |
title="AI Detection and Grammar Correction", | |
description="Detect AI-generated content and correct grammar issues." | |
) | |
# Launch the app | |
iface.launch() | |