Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,73 @@ from nltk.corpus import wordnet
|
|
8 |
from spellchecker import SpellChecker
|
9 |
import re
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Initialize the English text classification pipeline for AI detection
|
12 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
13 |
|
@@ -151,7 +218,8 @@ def correct_spelling(text):
|
|
151 |
def paraphrase_and_correct(text):
|
152 |
# Add synonym replacement here
|
153 |
cleaned_text = remove_redundant_words(text)
|
154 |
-
|
|
|
155 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
156 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
157 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|
|
|
8 |
from spellchecker import SpellChecker
|
9 |
import re
|
10 |
|
11 |
+
|
12 |
+
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('stopwords')
|
15 |
+
nltk.download('averaged_perceptron_tagger')
|
16 |
+
nltk.download('wordnet')
|
17 |
+
top_words = set(stopwords.words("english")) # More efficient as a set
|
18 |
+
|
19 |
+
def plagiarism_removal(text):
|
20 |
+
def plagiarism_remover(word):
|
21 |
+
# Handle stopwords, punctuation, and excluded words
|
22 |
+
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
23 |
+
return word
|
24 |
+
|
25 |
+
# Find synonyms
|
26 |
+
synonyms = set()
|
27 |
+
for syn in wordnet.synsets(word):
|
28 |
+
for lemma in syn.lemmas():
|
29 |
+
# Exclude overly technical synonyms or words with underscores
|
30 |
+
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
|
31 |
+
synonyms.add(lemma.name())
|
32 |
+
|
33 |
+
# Get part of speech for word and filter synonyms with the same POS
|
34 |
+
pos_tag_word = nltk.pos_tag([word])[0]
|
35 |
+
|
36 |
+
# Avoid replacing certain parts of speech
|
37 |
+
if pos_tag_word[1] in exclude_tags:
|
38 |
+
return word
|
39 |
+
|
40 |
+
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
41 |
+
|
42 |
+
# Return original word if no appropriate synonyms found
|
43 |
+
if not filtered_synonyms:
|
44 |
+
return word
|
45 |
+
|
46 |
+
# Select a random synonym from the filtered list
|
47 |
+
synonym_choice = random.choice(filtered_synonyms)
|
48 |
+
|
49 |
+
# Retain original capitalization
|
50 |
+
if word.istitle():
|
51 |
+
return synonym_choice.title()
|
52 |
+
return synonym_choice
|
53 |
+
|
54 |
+
# Tokenize, replace words, and join them back
|
55 |
+
para_split = word_tokenize(text)
|
56 |
+
final_text = [plagiarism_remover(word) for word in para_split]
|
57 |
+
|
58 |
+
# Handle spacing around punctuation correctly
|
59 |
+
corrected_text = []
|
60 |
+
for i in range(len(final_text)):
|
61 |
+
if final_text[i] in string.punctuation and i > 0:
|
62 |
+
corrected_text[-1] += final_text[i] # Append punctuation to previous word
|
63 |
+
else:
|
64 |
+
corrected_text.append(final_text[i])
|
65 |
+
|
66 |
+
return " ".join(corrected_text)
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# Words we don't want to replace
|
75 |
+
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|
76 |
+
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
|
77 |
+
|
78 |
# Initialize the English text classification pipeline for AI detection
|
79 |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
80 |
|
|
|
218 |
def paraphrase_and_correct(text):
|
219 |
# Add synonym replacement here
|
220 |
cleaned_text = remove_redundant_words(text)
|
221 |
+
plag_removed=plagiarism_removal(cleaned_text)
|
222 |
+
paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
|
223 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
224 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
225 |
paraphrased_text = correct_tense_errors(paraphrased_text)
|