Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,55 +1,162 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
import spacy
|
4 |
import subprocess
|
5 |
import nltk
|
6 |
from nltk.corpus import wordnet
|
7 |
from spellchecker import SpellChecker
|
|
|
8 |
|
9 |
-
# Initialize
|
|
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
53 |
-
ginger_button.click(fn=correct_with_ginger, inputs=t2, outputs=result2)
|
54 |
-
|
55 |
-
demo.launch(share=True)
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
|
|
3 |
import spacy
|
4 |
import subprocess
|
5 |
import nltk
|
6 |
from nltk.corpus import wordnet
|
7 |
from spellchecker import SpellChecker
|
8 |
+
from ginger import get_ginger_result # Importing the grammar correction function
|
9 |
|
10 |
+
# Initialize the English text classification pipeline for AI detection
|
11 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
12 |
|
13 |
+
# Initialize the spell checker
|
14 |
+
spell = SpellChecker()
|
15 |
+
|
16 |
+
# Ensure necessary NLTK data is downloaded
|
17 |
+
nltk.download('wordnet')
|
18 |
+
nltk.download('omw-1.4')
|
19 |
+
|
20 |
+
# Ensure the SpaCy model is installed
|
21 |
+
try:
|
22 |
+
nlp = spacy.load("en_core_web_sm")
|
23 |
+
except OSError:
|
24 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
25 |
+
nlp = spacy.load("en_core_web_sm")
|
26 |
+
|
27 |
+
# Function to predict the label and score for English text (AI Detection)
|
28 |
+
def predict_en(text):
|
29 |
+
res = pipeline_en(text)[0]
|
30 |
+
return res['label'], res['score']
|
31 |
+
|
32 |
+
# Function to get synonyms using NLTK WordNet
|
33 |
+
def get_synonyms_nltk(word, pos):
|
34 |
+
synsets = wordnet.synsets(word, pos=pos)
|
35 |
+
if synsets:
|
36 |
+
lemmas = synsets[0].lemmas()
|
37 |
+
return [lemma.name() for lemma in lemmas]
|
38 |
+
return []
|
39 |
+
|
40 |
+
# Function to remove redundant and meaningless words
|
41 |
+
def remove_redundant_words(text):
|
42 |
+
doc = nlp(text)
|
43 |
+
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
44 |
+
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
45 |
+
return ' '.join(filtered_text)
|
46 |
+
|
47 |
+
# Function to capitalize the first letter of sentences and proper nouns
|
48 |
+
def capitalize_sentences_and_nouns(text):
|
49 |
+
doc = nlp(text)
|
50 |
+
corrected_text = []
|
51 |
+
|
52 |
+
for sent in doc.sents:
|
53 |
+
sentence = []
|
54 |
+
for token in sent:
|
55 |
+
if token.i == sent.start: # First word of the sentence
|
56 |
+
sentence.append(token.text.capitalize())
|
57 |
+
elif token.pos_ == "PROPN": # Proper noun
|
58 |
+
sentence.append(token.text.capitalize())
|
59 |
+
else:
|
60 |
+
sentence.append(token.text)
|
61 |
+
corrected_text.append(' '.join(sentence))
|
62 |
+
|
63 |
+
return ' '.join(corrected_text)
|
64 |
+
|
65 |
+
# Function to force capitalization of the first letter of every sentence
|
66 |
+
def force_first_letter_capital(text):
|
67 |
+
sentences = text.split(". ") # Split by period to get each sentence
|
68 |
+
capitalized_sentences = [sentence[0].capitalize() + sentence[1:] if sentence else "" for sentence in sentences]
|
69 |
+
return ". ".join(capitalized_sentences)
|
70 |
+
|
71 |
+
# Function to correct tense errors in a sentence
|
72 |
+
def correct_tense_errors(text):
|
73 |
+
doc = nlp(text)
|
74 |
+
corrected_text = []
|
75 |
+
for token in doc:
|
76 |
+
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
|
77 |
+
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
78 |
+
corrected_text.append(lemma)
|
79 |
+
else:
|
80 |
+
corrected_text.append(token.text)
|
81 |
+
return ' '.join(corrected_text)
|
82 |
+
|
83 |
+
# Function to correct singular/plural errors
|
84 |
+
def correct_singular_plural_errors(text):
|
85 |
+
doc = nlp(text)
|
86 |
+
corrected_text = []
|
87 |
|
88 |
+
for token in doc:
|
89 |
+
if token.pos_ == "NOUN":
|
90 |
+
if token.tag_ == "NN": # Singular noun
|
91 |
+
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
|
92 |
+
corrected_text.append(token.lemma_ + 's')
|
93 |
+
else:
|
94 |
+
corrected_text.append(token.text)
|
95 |
+
elif token.tag_ == "NNS": # Plural noun
|
96 |
+
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
|
97 |
+
corrected_text.append(token.lemma_)
|
98 |
+
else:
|
99 |
+
corrected_text.append(token.text)
|
100 |
+
else:
|
101 |
+
corrected_text.append(token.text)
|
102 |
+
|
103 |
+
return ' '.join(corrected_text)
|
104 |
+
|
105 |
+
# Function to check and correct article errors
|
106 |
+
def correct_article_errors(text):
|
107 |
+
doc = nlp(text)
|
108 |
+
corrected_text = []
|
109 |
+
for token in doc:
|
110 |
+
if token.text in ['a', 'an']:
|
111 |
+
next_token = token.nbor(1)
|
112 |
+
if token.text == "a" and next_token.text[0].lower() in "aeiou":
|
113 |
+
corrected_text.append("an")
|
114 |
+
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
|
115 |
+
corrected_text.append("a")
|
116 |
+
else:
|
117 |
+
corrected_text.append(token.text)
|
118 |
+
else:
|
119 |
+
corrected_text.append(token.text)
|
120 |
+
return ' '.join(corrected_text)
|
121 |
+
|
122 |
+
# Function to get the correct synonym while maintaining verb form
|
123 |
+
def replace_with_synonym(token):
|
124 |
+
pos = None
|
125 |
+
if token.pos_ == "VERB":
|
126 |
+
pos = wordnet.VERB
|
127 |
+
elif token.pos_ == "NOUN":
|
128 |
+
pos = wordnet.NOUN
|
129 |
+
elif token.pos_ == "ADJ":
|
130 |
+
pos = wordnet.ADJ
|
131 |
+
elif token.pos_ == "ADV":
|
132 |
+
pos = wordnet.ADV
|
133 |
|
134 |
+
synonyms = get_synonyms_nltk(token.text, pos)
|
135 |
+
if synonyms:
|
136 |
+
return synonyms[0]
|
137 |
+
return token.text
|
138 |
+
|
139 |
+
# Function to use Ginger API for grammar correction (NEW)
|
140 |
+
def correct_grammar_with_ginger(text):
|
141 |
+
result = get_ginger_result(text)
|
142 |
+
corrected_text = text
|
143 |
+
for suggestion in result["LightGingerTheTextResult"]:
|
144 |
+
if suggestion["Suggestions"]:
|
145 |
+
from_index = suggestion["From"]
|
146 |
+
to_index = suggestion["To"] + 1
|
147 |
+
suggested_text = suggestion["Suggestions"][0]["Text"]
|
148 |
+
corrected_text = corrected_text[:from_index] + suggested_text + corrected_text[to_index:]
|
149 |
+
return corrected_text
|
150 |
+
|
151 |
+
# Gradio interface
|
152 |
+
def process_text(text):
|
153 |
+
text = correct_article_errors(text)
|
154 |
+
text = correct_singular_plural_errors(text)
|
155 |
+
text = correct_tense_errors(text)
|
156 |
+
text = capitalize_sentences_and_nouns(text)
|
157 |
+
text = remove_redundant_words(text)
|
158 |
+
text = correct_grammar_with_ginger(text) # Add grammar correction using Ginger here
|
159 |
+
return text
|
160 |
+
|
161 |
+
iface = gr.Interface(fn=process_text, inputs="text", outputs="text")
|
162 |
+
iface.launch()
|
|
|
|
|
|
|
|