Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
import subprocess
|
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet, stopwords # Import stopwords here
|
8 |
from spellchecker import SpellChecker
|
@@ -26,54 +27,70 @@ download_nltk_resources()
|
|
26 |
|
27 |
top_words = set(stopwords.words("english")) # More efficient as a set
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
for syn in wordnet.synsets(word):
|
38 |
for lemma in syn.lemmas():
|
39 |
# Exclude overly technical synonyms or words with underscores
|
40 |
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
|
41 |
synonyms.add(lemma.name())
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Avoid replacing certain parts of speech
|
47 |
-
if pos_tag_word[1] in exclude_tags:
|
48 |
-
return word
|
49 |
-
|
50 |
-
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
51 |
-
|
52 |
-
# Return original word if no appropriate synonyms found
|
53 |
-
if not filtered_synonyms:
|
54 |
-
return word
|
55 |
-
|
56 |
-
# Select a random synonym from the filtered list
|
57 |
-
synonym_choice = random.choice(filtered_synonyms)
|
58 |
-
|
59 |
-
# Retain original capitalization
|
60 |
-
if word.istitle():
|
61 |
-
return synonym_choice.title()
|
62 |
-
return synonym_choice
|
63 |
-
|
64 |
-
# Tokenize, replace words, and join them back
|
65 |
-
para_split = nltk.word_tokenize(text)
|
66 |
-
final_text = [plagiarism_remover(word) for word in para_split]
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
return " ".join(corrected_text)
|
77 |
|
78 |
# Words we don't want to replace
|
79 |
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|
|
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
5 |
import subprocess
|
6 |
+
import json
|
7 |
import nltk
|
8 |
from nltk.corpus import wordnet, stopwords # Import stopwords here
|
9 |
from spellchecker import SpellChecker
|
|
|
27 |
|
28 |
top_words = set(stopwords.words("english")) # More efficient as a set
|
29 |
|
30 |
+
import os
|
31 |
+
import json
|
32 |
+
|
33 |
+
# Path to the thesaurus file
|
34 |
+
thesaurus_file_path = 'en_thesaurus.jsonl' # Ensure the file path is correct
|
35 |
+
|
36 |
+
# Function to load the thesaurus into a dictionary
|
37 |
+
def load_thesaurus(file_path):
|
38 |
+
thesaurus_dict = {}
|
39 |
+
try:
|
40 |
+
with open(file_path, 'r', encoding='utf-8') as file:
|
41 |
+
for line in file:
|
42 |
+
# Parse each line as a JSON object
|
43 |
+
entry = json.loads(line.strip())
|
44 |
+
word = entry.get("word")
|
45 |
+
synonyms = entry.get("synonyms", [])
|
46 |
+
if word:
|
47 |
+
thesaurus_dict[word] = synonyms
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error loading thesaurus: {e}")
|
50 |
+
|
51 |
+
return thesaurus_dict
|
52 |
+
|
53 |
+
# Load the thesaurus
|
54 |
+
synonym_dict = load_thesaurus(thesaurus_file_path)
|
55 |
+
|
56 |
+
# Modified plagiarism_remover function to use the loaded thesaurus
|
57 |
+
def plagiarism_remover(word):
|
58 |
+
# Handle stopwords, punctuation, and excluded words
|
59 |
+
if word.lower() in top_words or word.lower() in exclude_words or word in string.punctuation:
|
60 |
+
return word
|
61 |
+
|
62 |
+
# Check for synonyms in the custom thesaurus
|
63 |
+
synonyms = synonym_dict.get(word.lower(), set())
|
64 |
+
|
65 |
+
# If no synonyms found in the custom thesaurus, use WordNet
|
66 |
+
if not synonyms:
|
67 |
for syn in wordnet.synsets(word):
|
68 |
for lemma in syn.lemmas():
|
69 |
# Exclude overly technical synonyms or words with underscores
|
70 |
if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower():
|
71 |
synonyms.add(lemma.name())
|
72 |
|
73 |
+
# Get part of speech for word and filter synonyms with the same POS
|
74 |
+
pos_tag_word = nltk.pos_tag([word])[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
# Avoid replacing certain parts of speech
|
77 |
+
if pos_tag_word[1] in exclude_tags:
|
78 |
+
return word
|
79 |
+
|
80 |
+
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
81 |
+
|
82 |
+
# Return original word if no appropriate synonyms found
|
83 |
+
if not filtered_synonyms:
|
84 |
+
return word
|
85 |
+
|
86 |
+
# Select a random synonym from the filtered list
|
87 |
+
synonym_choice = random.choice(filtered_synonyms)
|
88 |
+
|
89 |
+
# Retain original capitalization
|
90 |
+
if word.istitle():
|
91 |
+
return synonym_choice.title()
|
92 |
+
return synonym_choice
|
93 |
|
|
|
94 |
|
95 |
# Words we don't want to replace
|
96 |
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|