sashtech commited on
Commit
94cbde8
Β·
verified Β·
1 Parent(s): d45f7be

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -64
app.py CHANGED
@@ -4,49 +4,32 @@ from transformers import pipeline
4
  import spacy
5
  import subprocess
6
  import nltk
7
- from nltk.corpus import wordnet
8
- from nltk.corpus import stopwords
9
- from nltk.tokenize import word_tokenize
10
  from spellchecker import SpellChecker
11
  import re
12
- import string
13
  import random
 
14
 
15
- # Download necessary NLTK data
16
- nltk.download('punkt')
17
- nltk.download('stopwords')
18
- nltk.download('averaged_perceptron_tagger')
19
- nltk.download('averaged_perceptron_tagger_eng')
20
-
21
- nltk.download('wordnet')
22
- nltk.download('omw-1.4')
23
- nltk.download('punkt_tab')
24
-
25
-
26
- # Initialize stopwords
27
- stop_words = set(stopwords.words("english"))
28
-
29
- # Words we don't want to replace
30
- exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
31
- exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
32
-
33
- # Initialize the English text classification pipeline for AI detection
34
- pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
35
 
36
- # Initialize the spell checker
37
- spell = SpellChecker()
38
 
39
- # Ensure the SpaCy model is installed
40
- try:
41
- nlp = spacy.load("en_core_web_sm")
42
- except OSError:
43
- subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
44
- nlp = spacy.load("en_core_web_sm")
45
 
46
  def plagiarism_removal(text):
47
  def plagiarism_remover(word):
48
  # Handle stopwords, punctuation, and excluded words
49
- if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
50
  return word
51
 
52
  # Find synonyms
@@ -79,7 +62,7 @@ def plagiarism_removal(text):
79
  return synonym_choice
80
 
81
  # Tokenize, replace words, and join them back
82
- para_split = word_tokenize(text)
83
  final_text = [plagiarism_remover(word) for word in para_split]
84
 
85
  # Handle spacing around punctuation correctly
@@ -92,6 +75,23 @@ def plagiarism_removal(text):
92
 
93
  return " ".join(corrected_text)
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  # Function to predict the label and score for English text (AI Detection)
96
  def predict_en(text):
97
  res = pipeline_en(text)[0]
@@ -205,43 +205,37 @@ def correct_spelling(text):
205
  corrected_words = []
206
  for word in words:
207
  corrected_word = spell.correction(word)
208
- if corrected_word is not None:
209
- corrected_words.append(corrected_word)
210
- else:
211
- corrected_words.append(word)
212
  return ' '.join(corrected_words)
213
 
214
- # Main function for paraphrasing and grammar correction
215
  def paraphrase_and_correct(text):
216
- # Add synonym replacement here
217
  cleaned_text = remove_redundant_words(text)
 
 
 
 
 
 
 
 
218
  plag_removed = plagiarism_removal(cleaned_text)
219
- paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
220
- paraphrased_text = force_first_letter_capital(paraphrased_text)
221
- paraphrased_text = correct_article_errors(paraphrased_text)
222
- paraphrased_text = correct_tense_errors(paraphrased_text)
223
- paraphrased_text = ensure_subject_verb_agreement(paraphrased_text)
224
- paraphrased_text = fix_possessives(paraphrased_text)
225
- paraphrased_text = correct_spelling(paraphrased_text)
226
- paraphrased_text = fix_punctuation_spacing(paraphrased_text)
227
-
228
- return paraphrased_text
229
-
230
- # Gradio app setup
231
  with gr.Blocks() as demo:
 
232
  with gr.Tab("AI Detection"):
233
- t1 = gr.Textbox(lines=5, label='Text')
234
- button1 = gr.Button("πŸ€– Predict!")
235
- label1 = gr.Textbox(lines=1, label='Predicted Label πŸŽƒ')
236
- score1 = gr.Textbox(lines=1, label='Prob')
237
-
238
- button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
239
 
240
- with gr.Tab("Paraphrasing & Grammar Correction"):
241
- t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
242
- button2 = gr.Button("πŸ”„ Paraphrase and Correct")
243
- result2 = gr.Textbox(lines=5, label='Corrected Text')
244
 
245
- button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
246
 
247
- demo.launch(share=True)
 
4
  import spacy
5
  import subprocess
6
  import nltk
7
+ from nltk.corpus import wordnet, stopwords # Import stopwords here
 
 
8
  from spellchecker import SpellChecker
9
  import re
 
10
  import random
11
+ import string
12
 
13
+ # Ensure necessary NLTK data is downloaded
14
+ def download_nltk_resources():
15
+ try:
16
+ nltk.download('punkt') # Tokenizer for English text
17
+ nltk.download('stopwords') # Stop words
18
+ nltk.download('averaged_perceptron_tagger') # POS tagger
19
+ nltk.download('wordnet') # WordNet
20
+ nltk.download('omw-1.4') # Open Multilingual Wordnet
21
+ except Exception as e:
22
+ print(f"Error downloading NLTK resources: {e}")
 
 
 
 
 
 
 
 
 
 
23
 
24
+ # Call the download function
25
+ download_nltk_resources()
26
 
27
+ top_words = set(stopwords.words("english")) # More efficient as a set
 
 
 
 
 
28
 
29
  def plagiarism_removal(text):
30
  def plagiarism_remover(word):
31
  # Handle stopwords, punctuation, and excluded words
32
+ if word.lower() in top_words or word.lower() in exclude_words or word in string.punctuation:
33
  return word
34
 
35
  # Find synonyms
 
62
  return synonym_choice
63
 
64
  # Tokenize, replace words, and join them back
65
+ para_split = nltk.word_tokenize(text)
66
  final_text = [plagiarism_remover(word) for word in para_split]
67
 
68
  # Handle spacing around punctuation correctly
 
75
 
76
  return " ".join(corrected_text)
77
 
78
+ # Words we don't want to replace
79
+ exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
80
+ exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
81
+
82
+ # Initialize the English text classification pipeline for AI detection
83
+ pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
84
+
85
+ # Initialize the spell checker
86
+ spell = SpellChecker()
87
+
88
+ # Ensure the SpaCy model is installed
89
+ try:
90
+ nlp = spacy.load("en_core_web_sm")
91
+ except OSError:
92
+ subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
93
+ nlp = spacy.load("en_core_web_sm")
94
+
95
  # Function to predict the label and score for English text (AI Detection)
96
  def predict_en(text):
97
  res = pipeline_en(text)[0]
 
205
  corrected_words = []
206
  for word in words:
207
  corrected_word = spell.correction(word)
208
+ corrected_words.append(corrected_word)
 
 
 
209
  return ' '.join(corrected_words)
210
 
211
+ # Main processing function for paraphrasing and grammar correction
212
  def paraphrase_and_correct(text):
 
213
  cleaned_text = remove_redundant_words(text)
214
+ cleaned_text = fix_punctuation_spacing(cleaned_text)
215
+ cleaned_text = fix_possessives(cleaned_text)
216
+ cleaned_text = capitalize_sentences_and_nouns(cleaned_text)
217
+ cleaned_text = force_first_letter_capital(cleaned_text)
218
+ cleaned_text = correct_tense_errors(cleaned_text)
219
+ cleaned_text = correct_article_errors(cleaned_text)
220
+ cleaned_text = ensure_subject_verb_agreement(cleaned_text)
221
+ cleaned_text = correct_spelling(cleaned_text)
222
  plag_removed = plagiarism_removal(cleaned_text)
223
+ return plag_removed
224
+
225
+ # Create the Gradio interface
 
 
 
 
 
 
 
 
 
226
  with gr.Blocks() as demo:
227
+ gr.Markdown("# AI Text Processor")
228
  with gr.Tab("AI Detection"):
229
+ t1 = gr.Textbox(lines=5, label='Input Text')
230
+ output1 = gr.Label()
231
+ button1 = gr.Button("πŸš€ Process!")
232
+ button1.click(fn=predict_en, inputs=t1, outputs=output1)
 
 
233
 
234
+ with gr.Tab("Paraphrasing and Grammar Correction"):
235
+ t2 = gr.Textbox(lines=5, label='Input Text')
236
+ button2 = gr.Button("πŸš€ Process!")
237
+ output2 = gr.Textbox(lines=5, label='Processed Text')
238
 
239
+ button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=output2)
240
 
241
+ demo.launch()