Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
import spacy
|
@@ -6,121 +5,33 @@ import subprocess
|
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
from spellchecker import SpellChecker
|
9 |
-
import language_tool_python
|
10 |
|
11 |
-
# Initialize
|
12 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
# Ensure necessary NLTK data is downloaded
|
21 |
-
nltk.download('wordnet')
|
22 |
-
nltk.download('omw-1.4')
|
23 |
-
|
24 |
-
# Ensure the SpaCy model is installed
|
25 |
-
try:
|
26 |
-
nlp = spacy.load("en_core_web_sm")
|
27 |
-
except OSError:
|
28 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
29 |
-
nlp = spacy.load("en_core_web_sm")
|
30 |
-
|
31 |
-
# Function to predict the label and score for English text (AI Detection)
|
32 |
-
def predict_en(text):
|
33 |
-
res = pipeline_en(text)[0]
|
34 |
-
return res['label'], res['score']
|
35 |
-
|
36 |
-
# Function to remove redundant and meaningless words
|
37 |
-
def remove_redundant_words(text):
|
38 |
-
doc = nlp(text)
|
39 |
-
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
40 |
-
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
41 |
-
return ' '.join(filtered_text)
|
42 |
-
|
43 |
-
# Function to apply grammatical corrections using LanguageTool
|
44 |
-
def correct_grammar(text):
|
45 |
-
corrected_text = tool.correct(text)
|
46 |
-
return corrected_text
|
47 |
-
|
48 |
-
# Function to correct spelling errors
|
49 |
-
def correct_spelling(text):
|
50 |
-
words = text.split()
|
51 |
-
corrected_words = []
|
52 |
-
for word in words:
|
53 |
-
corrected_word = spell.correction(word)
|
54 |
-
corrected_words.append(corrected_word if corrected_word else word) # Keep original word if no correction
|
55 |
-
return ' '.join(corrected_words)
|
56 |
-
|
57 |
-
# Function to capitalize the first letter of each sentence and proper nouns
|
58 |
-
def capitalize_sentences_and_nouns(text):
|
59 |
-
doc = nlp(text)
|
60 |
-
corrected_text = []
|
61 |
-
|
62 |
-
for sent in doc.sents:
|
63 |
-
sentence = []
|
64 |
-
for token in sent:
|
65 |
-
if token.i == sent.start: # First word of the sentence
|
66 |
-
sentence.append(token.text.capitalize())
|
67 |
-
elif token.pos_ == "PROPN": # Proper noun
|
68 |
-
sentence.append(token.text.capitalize())
|
69 |
-
else:
|
70 |
-
sentence.append(token.text)
|
71 |
-
corrected_text.append(' '.join(sentence))
|
72 |
-
|
73 |
-
return ' '.join(corrected_text)
|
74 |
-
|
75 |
-
# Function to rephrase with contextually appropriate synonyms
|
76 |
-
def rephrase_with_synonyms(text):
|
77 |
-
doc = nlp(text)
|
78 |
-
rephrased_text = []
|
79 |
-
|
80 |
-
for token in doc:
|
81 |
-
pos_tag = None
|
82 |
-
if token.pos_ == "NOUN":
|
83 |
-
pos_tag = wordnet.NOUN
|
84 |
-
elif token.pos_ == "VERB":
|
85 |
-
pos_tag = wordnet.VERB
|
86 |
-
elif token.pos_ == "ADJ":
|
87 |
-
pos_tag = wordnet.ADJ
|
88 |
-
elif token.pos_ == "ADV":
|
89 |
-
pos_tag = wordnet.ADV
|
90 |
-
|
91 |
-
if pos_tag:
|
92 |
-
synonyms = wordnet.synsets(token.text, pos=pos_tag)
|
93 |
-
if synonyms:
|
94 |
-
synonym = synonyms[0].lemmas()[0].name() # Choose the first synonym
|
95 |
-
rephrased_text.append(synonym)
|
96 |
-
else:
|
97 |
-
rephrased_text.append(token.text)
|
98 |
-
else:
|
99 |
-
rephrased_text.append(token.text)
|
100 |
-
|
101 |
-
return ' '.join(rephrased_text)
|
102 |
-
|
103 |
-
# Comprehensive function for paraphrasing and grammar correction
|
104 |
-
def paraphrase_and_correct(text):
|
105 |
-
# Step 1: Remove meaningless or redundant words
|
106 |
-
cleaned_text = remove_redundant_words(text)
|
107 |
-
|
108 |
-
# Step 2: Capitalize sentences and proper nouns
|
109 |
-
paraphrased_text = capitalize_sentences_and_nouns(cleaned_text)
|
110 |
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
124 |
|
125 |
# Gradio app setup with two tabs
|
126 |
with gr.Blocks() as demo:
|
@@ -130,15 +41,15 @@ with gr.Blocks() as demo:
|
|
130 |
label1 = gr.Textbox(lines=1, label='Predicted Label π')
|
131 |
score1 = gr.Textbox(lines=1, label='Prob')
|
132 |
|
133 |
-
# Connect the prediction function to the button
|
134 |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
135 |
|
136 |
with gr.Tab("Paraphrasing & Grammar Correction"):
|
137 |
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
|
138 |
button2 = gr.Button("π Paraphrase and Correct")
|
|
|
139 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
140 |
|
141 |
-
# Connect the paraphrasing and correction function to the button
|
142 |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
|
|
143 |
|
144 |
demo.launch(share=True)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import spacy
|
|
|
5 |
import nltk
|
6 |
from nltk.corpus import wordnet
|
7 |
from spellchecker import SpellChecker
|
|
|
8 |
|
9 |
+
# Initialize other components (AI detection, NLP, etc.) as before...
|
|
|
10 |
|
11 |
+
# Function to paraphrase and correct grammar using Ginger
|
12 |
+
def correct_with_ginger(text):
|
13 |
+
ginger_result = get_ginger_result(text)
|
14 |
+
if "error" in ginger_result:
|
15 |
+
return ginger_result["error"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
original_text = text
|
18 |
+
fixed_text = original_text
|
19 |
+
color_gap, fixed_gap = 0, 0
|
20 |
+
if not ginger_result["LightGingerTheTextResult"]:
|
21 |
+
return "No grammatical issues found!"
|
22 |
|
23 |
+
for result in ginger_result["LightGingerTheTextResult"]:
|
24 |
+
if result["Suggestions"]:
|
25 |
+
from_index = result["From"] + color_gap
|
26 |
+
to_index = result["To"] + 1 + color_gap
|
27 |
+
suggest = result["Suggestions"][0]["Text"]
|
28 |
+
|
29 |
+
original_text = original_text[:from_index] + original_text[from_index:to_index] + original_text[to_index:]
|
30 |
+
fixed_text = fixed_text[:from_index-fixed_gap] + suggest + fixed_text[to_index-fixed_gap:]
|
31 |
+
color_gap += len(suggest) - (to_index - from_index)
|
32 |
+
fixed_gap += to_index - from_index - len(suggest)
|
33 |
+
|
34 |
+
return fixed_text
|
35 |
|
36 |
# Gradio app setup with two tabs
|
37 |
with gr.Blocks() as demo:
|
|
|
41 |
label1 = gr.Textbox(lines=1, label='Predicted Label π')
|
42 |
score1 = gr.Textbox(lines=1, label='Prob')
|
43 |
|
|
|
44 |
button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1])
|
45 |
|
46 |
with gr.Tab("Paraphrasing & Grammar Correction"):
|
47 |
t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction')
|
48 |
button2 = gr.Button("π Paraphrase and Correct")
|
49 |
+
ginger_button = gr.Button("π§ Correct with Ginger")
|
50 |
result2 = gr.Textbox(lines=5, label='Corrected Text')
|
51 |
|
|
|
52 |
button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2)
|
53 |
+
ginger_button.click(fn=correct_with_ginger, inputs=t2, outputs=result2)
|
54 |
|
55 |
demo.launch(share=True)
|