Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,18 +5,39 @@ import spacy
|
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
-
from nltk.corpus import stopwords
|
|
|
9 |
from spellchecker import SpellChecker
|
10 |
import re
|
|
|
|
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
def plagiarism_removal(text):
|
22 |
def plagiarism_remover(word):
|
@@ -67,33 +88,6 @@ def plagiarism_removal(text):
|
|
67 |
|
68 |
return " ".join(corrected_text)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Words we don't want to replace
|
77 |
-
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|
78 |
-
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
|
79 |
-
|
80 |
-
# Initialize the English text classification pipeline for AI detection
|
81 |
-
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
82 |
-
|
83 |
-
# Initialize the spell checker
|
84 |
-
spell = SpellChecker()
|
85 |
-
|
86 |
-
# Ensure necessary NLTK data is downloaded
|
87 |
-
nltk.download('wordnet')
|
88 |
-
nltk.download('omw-1.4')
|
89 |
-
|
90 |
-
# Ensure the SpaCy model is installed
|
91 |
-
try:
|
92 |
-
nlp = spacy.load("en_core_web_sm")
|
93 |
-
except OSError:
|
94 |
-
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
95 |
-
nlp = spacy.load("en_core_web_sm")
|
96 |
-
|
97 |
# Function to predict the label and score for English text (AI Detection)
|
98 |
def predict_en(text):
|
99 |
res = pipeline_en(text)[0]
|
@@ -213,14 +207,11 @@ def correct_spelling(text):
|
|
213 |
corrected_words.append(word)
|
214 |
return ' '.join(corrected_words)
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
# Main function for paraphrasing and grammar correction
|
220 |
def paraphrase_and_correct(text):
|
221 |
-
|
222 |
cleaned_text = remove_redundant_words(text)
|
223 |
-
plag_removed=plagiarism_removal(cleaned_text)
|
224 |
paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
|
225 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
226 |
paraphrased_text = correct_article_errors(paraphrased_text)
|
|
|
5 |
import subprocess
|
6 |
import nltk
|
7 |
from nltk.corpus import wordnet
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
from spellchecker import SpellChecker
|
11 |
import re
|
12 |
+
import string
|
13 |
+
import random
|
14 |
|
15 |
+
# Download necessary NLTK data
|
16 |
+
nltk.download('punkt')
|
17 |
+
nltk.download('stopwords')
|
18 |
+
nltk.download('averaged_perceptron_tagger')
|
19 |
+
nltk.download('wordnet')
|
20 |
+
nltk.download('omw-1.4')
|
21 |
+
|
22 |
+
# Initialize stopwords
|
23 |
+
stop_words = set(stopwords.words("english"))
|
24 |
+
|
25 |
+
# Words we don't want to replace
|
26 |
+
exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'}
|
27 |
+
exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'}
|
28 |
+
|
29 |
+
# Initialize the English text classification pipeline for AI detection
|
30 |
+
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
|
31 |
|
32 |
+
# Initialize the spell checker
|
33 |
+
spell = SpellChecker()
|
34 |
|
35 |
+
# Ensure the SpaCy model is installed
|
36 |
+
try:
|
37 |
+
nlp = spacy.load("en_core_web_sm")
|
38 |
+
except OSError:
|
39 |
+
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
40 |
+
nlp = spacy.load("en_core_web_sm")
|
41 |
|
42 |
def plagiarism_removal(text):
|
43 |
def plagiarism_remover(word):
|
|
|
88 |
|
89 |
return " ".join(corrected_text)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# Function to predict the label and score for English text (AI Detection)
|
92 |
def predict_en(text):
|
93 |
res = pipeline_en(text)[0]
|
|
|
207 |
corrected_words.append(word)
|
208 |
return ' '.join(corrected_words)
|
209 |
|
|
|
|
|
|
|
210 |
# Main function for paraphrasing and grammar correction
|
211 |
def paraphrase_and_correct(text):
|
212 |
+
# Add synonym replacement here
|
213 |
cleaned_text = remove_redundant_words(text)
|
214 |
+
plag_removed = plagiarism_removal(cleaned_text)
|
215 |
paraphrased_text = capitalize_sentences_and_nouns(plag_removed)
|
216 |
paraphrased_text = force_first_letter_capital(paraphrased_text)
|
217 |
paraphrased_text = correct_article_errors(paraphrased_text)
|