Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,6 @@ nltk.download('averaged_perceptron_tagger')
|
|
19 |
nltk.download('averaged_perceptron_tagger_eng')
|
20 |
nltk.download('wordnet')
|
21 |
nltk.download('omw-1.4')
|
22 |
-
nltk.download('punkt_tab')
|
23 |
|
24 |
# Initialize stopwords
|
25 |
stop_words = set(stopwords.words("english"))
|
@@ -41,11 +40,12 @@ except OSError:
|
|
41 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
42 |
nlp = spacy.load("en_core_web_sm")
|
43 |
|
|
|
44 |
def plagiarism_removal(text):
|
45 |
def plagiarism_remover(word):
|
46 |
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
47 |
return word
|
48 |
-
|
49 |
# Find synonyms
|
50 |
synonyms = set()
|
51 |
for syn in wordnet.synsets(word):
|
@@ -57,7 +57,7 @@ def plagiarism_removal(text):
|
|
57 |
|
58 |
if pos_tag_word[1] in exclude_tags:
|
59 |
return word
|
60 |
-
|
61 |
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
62 |
|
63 |
if not filtered_synonyms:
|
@@ -71,26 +71,29 @@ def plagiarism_removal(text):
|
|
71 |
|
72 |
para_split = word_tokenize(text)
|
73 |
final_text = [plagiarism_remover(word) for word in para_split]
|
74 |
-
|
75 |
corrected_text = []
|
76 |
for i in range(len(final_text)):
|
77 |
if final_text[i] in string.punctuation and i > 0:
|
78 |
-
corrected_text[-1] += final_text[i]
|
79 |
else:
|
80 |
corrected_text.append(final_text[i])
|
81 |
|
82 |
return " ".join(corrected_text)
|
83 |
|
|
|
84 |
def predict_en(text):
|
85 |
res = pipeline_en(text)[0]
|
86 |
return res['label'], res['score']
|
87 |
|
|
|
88 |
def remove_redundant_words(text):
|
89 |
doc = nlp(text)
|
90 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
91 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
92 |
return ' '.join(filtered_text)
|
93 |
|
|
|
94 |
def fix_punctuation_spacing(text):
|
95 |
words = text.split(' ')
|
96 |
cleaned_words = []
|
@@ -103,12 +106,14 @@ def fix_punctuation_spacing(text):
|
|
103 |
cleaned_words.append(word)
|
104 |
|
105 |
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
|
106 |
-
|
|
|
107 |
|
108 |
def fix_possessives(text):
|
109 |
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
|
110 |
return text
|
111 |
|
|
|
112 |
def capitalize_sentences_and_nouns(text):
|
113 |
doc = nlp(text)
|
114 |
corrected_text = []
|
@@ -126,30 +131,41 @@ def capitalize_sentences_and_nouns(text):
|
|
126 |
|
127 |
return ' '.join(corrected_text)
|
128 |
|
|
|
129 |
def force_first_letter_capital(text):
|
130 |
sentences = re.split(r'(?<=\w[.!?])\s+', text)
|
131 |
capitalized_sentences = []
|
132 |
-
|
133 |
for sentence in sentences:
|
134 |
if sentence:
|
135 |
capitalized_sentence = sentence[0].capitalize() + sentence[1:]
|
136 |
if not re.search(r'[.!?]$', capitalized_sentence):
|
137 |
capitalized_sentence += '.'
|
138 |
capitalized_sentences.append(capitalized_sentence)
|
139 |
-
|
140 |
return " ".join(capitalized_sentences)
|
141 |
|
|
|
142 |
def correct_tense_errors(text):
|
143 |
doc = nlp(text)
|
144 |
corrected_text = []
|
145 |
for token in doc:
|
146 |
-
if token.pos_ == "VERB"
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
else:
|
150 |
corrected_text.append(token.text)
|
151 |
return ' '.join(corrected_text)
|
152 |
|
|
|
153 |
def correct_article_errors(text):
|
154 |
doc = nlp(text)
|
155 |
corrected_text = []
|
@@ -166,6 +182,7 @@ def correct_article_errors(text):
|
|
166 |
corrected_text.append(token.text)
|
167 |
return ' '.join(corrected_text)
|
168 |
|
|
|
169 |
def ensure_subject_verb_agreement(text):
|
170 |
doc = nlp(text)
|
171 |
corrected_text = []
|
@@ -178,6 +195,7 @@ def ensure_subject_verb_agreement(text):
|
|
178 |
corrected_text.append(token.text)
|
179 |
return ' '.join(corrected_text)
|
180 |
|
|
|
181 |
def correct_spelling(text):
|
182 |
words = text.split()
|
183 |
corrected_words = []
|
@@ -189,6 +207,7 @@ def correct_spelling(text):
|
|
189 |
corrected_words.append(word)
|
190 |
return ' '.join(corrected_words)
|
191 |
|
|
|
192 |
def paraphrase_and_correct(text):
|
193 |
paragraphs = text.split("\n\n") # Split by paragraphs
|
194 |
|
@@ -209,6 +228,7 @@ def paraphrase_and_correct(text):
|
|
209 |
|
210 |
return "\n\n".join(processed_paragraphs) # Reassemble the text with paragraphs
|
211 |
|
|
|
212 |
# Gradio app setup
|
213 |
with gr.Blocks() as demo:
|
214 |
with gr.Tab("AI Detection"):
|
|
|
19 |
nltk.download('averaged_perceptron_tagger_eng')
|
20 |
nltk.download('wordnet')
|
21 |
nltk.download('omw-1.4')
|
|
|
22 |
|
23 |
# Initialize stopwords
|
24 |
stop_words = set(stopwords.words("english"))
|
|
|
40 |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
|
41 |
nlp = spacy.load("en_core_web_sm")
|
42 |
|
43 |
+
|
44 |
def plagiarism_removal(text):
|
45 |
def plagiarism_remover(word):
|
46 |
if word.lower() in stop_words or word.lower() in exclude_words or word in string.punctuation:
|
47 |
return word
|
48 |
+
|
49 |
# Find synonyms
|
50 |
synonyms = set()
|
51 |
for syn in wordnet.synsets(word):
|
|
|
57 |
|
58 |
if pos_tag_word[1] in exclude_tags:
|
59 |
return word
|
60 |
+
|
61 |
filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]]
|
62 |
|
63 |
if not filtered_synonyms:
|
|
|
71 |
|
72 |
para_split = word_tokenize(text)
|
73 |
final_text = [plagiarism_remover(word) for word in para_split]
|
74 |
+
|
75 |
corrected_text = []
|
76 |
for i in range(len(final_text)):
|
77 |
if final_text[i] in string.punctuation and i > 0:
|
78 |
+
corrected_text[-1] += final_text[i]
|
79 |
else:
|
80 |
corrected_text.append(final_text[i])
|
81 |
|
82 |
return " ".join(corrected_text)
|
83 |
|
84 |
+
|
85 |
def predict_en(text):
|
86 |
res = pipeline_en(text)[0]
|
87 |
return res['label'], res['score']
|
88 |
|
89 |
+
|
90 |
def remove_redundant_words(text):
|
91 |
doc = nlp(text)
|
92 |
meaningless_words = {"actually", "basically", "literally", "really", "very", "just"}
|
93 |
filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words]
|
94 |
return ' '.join(filtered_text)
|
95 |
|
96 |
+
|
97 |
def fix_punctuation_spacing(text):
|
98 |
words = text.split(' ')
|
99 |
cleaned_words = []
|
|
|
106 |
cleaned_words.append(word)
|
107 |
|
108 |
return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \
|
109 |
+
.replace(' !', '!').replace(' ?', '?').replace(' :', ':')
|
110 |
+
|
111 |
|
112 |
def fix_possessives(text):
|
113 |
text = re.sub(r'(\w)\s\'\s?s', r"\1's", text)
|
114 |
return text
|
115 |
|
116 |
+
|
117 |
def capitalize_sentences_and_nouns(text):
|
118 |
doc = nlp(text)
|
119 |
corrected_text = []
|
|
|
131 |
|
132 |
return ' '.join(corrected_text)
|
133 |
|
134 |
+
|
135 |
def force_first_letter_capital(text):
|
136 |
sentences = re.split(r'(?<=\w[.!?])\s+', text)
|
137 |
capitalized_sentences = []
|
138 |
+
|
139 |
for sentence in sentences:
|
140 |
if sentence:
|
141 |
capitalized_sentence = sentence[0].capitalize() + sentence[1:]
|
142 |
if not re.search(r'[.!?]$', capitalized_sentence):
|
143 |
capitalized_sentence += '.'
|
144 |
capitalized_sentences.append(capitalized_sentence)
|
145 |
+
|
146 |
return " ".join(capitalized_sentences)
|
147 |
|
148 |
+
|
149 |
def correct_tense_errors(text):
|
150 |
doc = nlp(text)
|
151 |
corrected_text = []
|
152 |
for token in doc:
|
153 |
+
if token.pos_ == "VERB":
|
154 |
+
tense = token.morph.get("Tense")
|
155 |
+
if tense:
|
156 |
+
if 'Past' in tense:
|
157 |
+
corrected_text.append(token.lemma_ + "ed")
|
158 |
+
elif 'Present' in tense and token.tag_ == 'VBZ':
|
159 |
+
corrected_text.append(token.lemma_ + "s")
|
160 |
+
else:
|
161 |
+
corrected_text.append(token.lemma_)
|
162 |
+
else:
|
163 |
+
corrected_text.append(token.text)
|
164 |
else:
|
165 |
corrected_text.append(token.text)
|
166 |
return ' '.join(corrected_text)
|
167 |
|
168 |
+
|
169 |
def correct_article_errors(text):
|
170 |
doc = nlp(text)
|
171 |
corrected_text = []
|
|
|
182 |
corrected_text.append(token.text)
|
183 |
return ' '.join(corrected_text)
|
184 |
|
185 |
+
|
186 |
def ensure_subject_verb_agreement(text):
|
187 |
doc = nlp(text)
|
188 |
corrected_text = []
|
|
|
195 |
corrected_text.append(token.text)
|
196 |
return ' '.join(corrected_text)
|
197 |
|
198 |
+
|
199 |
def correct_spelling(text):
|
200 |
words = text.split()
|
201 |
corrected_words = []
|
|
|
207 |
corrected_words.append(word)
|
208 |
return ' '.join(corrected_words)
|
209 |
|
210 |
+
|
211 |
def paraphrase_and_correct(text):
|
212 |
paragraphs = text.split("\n\n") # Split by paragraphs
|
213 |
|
|
|
228 |
|
229 |
return "\n\n".join(processed_paragraphs) # Reassemble the text with paragraphs
|
230 |
|
231 |
+
|
232 |
# Gradio app setup
|
233 |
with gr.Blocks() as demo:
|
234 |
with gr.Tab("AI Detection"):
|