import os import gradio as gr from transformers import pipeline import spacy import subprocess import nltk from nltk.corpus import wordnet from spellchecker import SpellChecker import language_tool_python # Initialize the English text classification pipeline for AI detection pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") # Initialize the spell checker spell = SpellChecker() # Initialize the LanguageTool for grammar correction tool = language_tool_python.LanguageTool('en-US') # Ensure necessary NLTK data is downloaded nltk.download('wordnet') nltk.download('omw-1.4') # Ensure the SpaCy model is installed try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Function to predict the label and score for English text (AI Detection) def predict_en(text): res = pipeline_en(text)[0] return res['label'], res['score'] # Function to remove redundant and meaningless words def remove_redundant_words(text): doc = nlp(text) meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] return ' '.join(filtered_text) # Function to apply grammatical corrections using LanguageTool def correct_grammar(text): corrected_text = tool.correct(text) return corrected_text # Function to correct spelling errors def correct_spelling(text): words = text.split() corrected_words = [] for word in words: corrected_word = spell.correction(word) corrected_words.append(corrected_word if corrected_word else word) # Keep original word if no correction return ' '.join(corrected_words) # Function to capitalize the first letter of each sentence and proper nouns def capitalize_sentences_and_nouns(text): doc = nlp(text) corrected_text = [] for sent in doc.sents: sentence = [] for token in sent: if token.i == sent.start: # First word of the sentence sentence.append(token.text.capitalize()) elif token.pos_ == "PROPN": # Proper noun sentence.append(token.text.capitalize()) else: sentence.append(token.text) corrected_text.append(' '.join(sentence)) return ' '.join(corrected_text) # Function to rephrase with contextually appropriate synonyms def rephrase_with_synonyms(text): doc = nlp(text) rephrased_text = [] for token in doc: pos_tag = None if token.pos_ == "NOUN": pos_tag = wordnet.NOUN elif token.pos_ == "VERB": pos_tag = wordnet.VERB elif token.pos_ == "ADJ": pos_tag = wordnet.ADJ elif token.pos_ == "ADV": pos_tag = wordnet.ADV if pos_tag: synonyms = wordnet.synsets(token.text, pos=pos_tag) if synonyms: synonym = synonyms[0].lemmas()[0].name() # Choose the first synonym rephrased_text.append(synonym) else: rephrased_text.append(token.text) else: rephrased_text.append(token.text) return ' '.join(rephrased_text) # Comprehensive function for paraphrasing and grammar correction def paraphrase_and_correct(text): # Step 1: Remove meaningless or redundant words cleaned_text = remove_redundant_words(text) # Step 2: Capitalize sentences and proper nouns paraphrased_text = capitalize_sentences_and_nouns(cleaned_text) # Step 3: Correct grammar using LanguageTool paraphrased_text = correct_grammar(paraphrased_text) # Step 4: Rephrase with contextually appropriate synonyms paraphrased_text = rephrase_with_synonyms(paraphrased_text) # Step 5: Correct spelling errors paraphrased_text = correct_spelling(paraphrased_text) # Step 6: Correct any remaining grammar issues after rephrasing paraphrased_text = correct_grammar(paraphrased_text) return paraphrased_text # Gradio app setup with two tabs with gr.Blocks() as demo: with gr.Tab("AI Detection"): t1 = gr.Textbox(lines=5, label='Text') button1 = gr.Button("🤖 Predict!") label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') score1 = gr.Textbox(lines=1, label='Prob') # Connect the prediction function to the button button1.click(fn=predict_en, inputs=t1, outputs=[label1, score1]) with gr.Tab("Paraphrasing & Grammar Correction"): t2 = gr.Textbox(lines=5, label='Enter text for paraphrasing and grammar correction') button2 = gr.Button("🔄 Paraphrase and Correct") result2 = gr.Textbox(lines=5, label='Corrected Text') # Connect the paraphrasing and correction function to the button button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=result2) demo.launch(share=True)