import os import gradio as gr from transformers import pipeline import spacy import subprocess import json import nltk from nltk.corpus import wordnet, stopwords # Import stopwords here from spellchecker import SpellChecker import re import random import string # Ensure necessary NLTK data is downloaded def download_nltk_resources(): try: nltk.download('punkt') # Tokenizer for English text nltk.download('stopwords') # Stop words nltk.download('averaged_perceptron_tagger') # POS tagger nltk.download('wordnet') # WordNet nltk.download('omw-1.4') # Open Multilingual Wordnet except Exception as e: print(f"Error downloading NLTK resources: {e}") # Call the download function download_nltk_resources() top_words = set(stopwords.words("english")) # More efficient as a set import os import json # Path to the thesaurus file thesaurus_file_path = 'en_thesaurus.jsonl' # Ensure the file path is correct # Function to load the thesaurus into a dictionary def load_thesaurus(file_path): thesaurus_dict = {} try: with open(file_path, 'r', encoding='utf-8') as file: for line in file: # Parse each line as a JSON object entry = json.loads(line.strip()) word = entry.get("word") synonyms = entry.get("synonyms", []) if word: thesaurus_dict[word] = synonyms except Exception as e: print(f"Error loading thesaurus: {e}") return thesaurus_dict # Load the thesaurus synonym_dict = load_thesaurus(thesaurus_file_path) # Modified plagiarism_remover function to use the loaded thesaurus def plagiarism_remover(word): # Handle stopwords, punctuation, and excluded words if word.lower() in top_words or word.lower() in exclude_words or word in string.punctuation: return word # Check for synonyms in the custom thesaurus synonyms = synonym_dict.get(word.lower(), set()) # If no synonyms found in the custom thesaurus, use WordNet if not synonyms: for syn in wordnet.synsets(word): for lemma in syn.lemmas(): # Exclude overly technical synonyms or words with underscores if "_" not in lemma.name() and lemma.name().isalpha() and lemma.name().lower() != word.lower(): synonyms.add(lemma.name()) # Get part of speech for word and filter synonyms with the same POS pos_tag_word = nltk.pos_tag([word])[0] # Avoid replacing certain parts of speech if pos_tag_word[1] in exclude_tags: return word filtered_synonyms = [syn for syn in synonyms if nltk.pos_tag([syn])[0][1] == pos_tag_word[1]] # Return original word if no appropriate synonyms found if not filtered_synonyms: return word # Select a random synonym from the filtered list synonym_choice = random.choice(filtered_synonyms) # Retain original capitalization if word.istitle(): return synonym_choice.title() return synonym_choice # Words we don't want to replace exclude_tags = {'PRP', 'PRP$', 'MD', 'VBZ', 'VBP', 'VBD', 'VBG', 'VBN', 'TO', 'IN', 'DT', 'CC'} exclude_words = {'is', 'am', 'are', 'was', 'were', 'have', 'has', 'do', 'does', 'did', 'will', 'shall', 'should', 'would', 'could', 'can', 'may', 'might'} # Initialize the English text classification pipeline for AI detection pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") # Initialize the spell checker spell = SpellChecker() # Ensure the SpaCy model is installed try: nlp = spacy.load("en_core_web_sm") except OSError: subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) nlp = spacy.load("en_core_web_sm") # Function to predict the label and score for English text (AI Detection) def predict_en(text): res = pipeline_en(text)[0] return res['label'], res['score'] # Function to remove redundant and meaningless words def remove_redundant_words(text): doc = nlp(text) meaningless_words = {"actually", "basically", "literally", "really", "very", "just"} filtered_text = [token.text for token in doc if token.text.lower() not in meaningless_words] return ' '.join(filtered_text) # Function to fix spacing before punctuation def fix_punctuation_spacing(text): # Split the text into words and punctuation words = text.split(' ') cleaned_words = [] punctuation_marks = {',', '.', "'", '!', '?', ':'} for word in words: if cleaned_words and word and word[0] in punctuation_marks: cleaned_words[-1] += word else: cleaned_words.append(word) return ' '.join(cleaned_words).replace(' ,', ',').replace(' .', '.').replace(" '", "'") \ .replace(' !', '!').replace(' ?', '?').replace(' :', ':') # Function to fix possessives like "Earth's" def fix_possessives(text): text = re.sub(r'(\w)\s\'\s?s', r"\1's", text) return text # Function to capitalize the first letter of sentences and proper nouns def capitalize_sentences_and_nouns(text): doc = nlp(text) corrected_text = [] for sent in doc.sents: sentence = [] for token in sent: if token.i == sent.start: sentence.append(token.text.capitalize()) elif token.pos_ == "PROPN": sentence.append(token.text.capitalize()) else: sentence.append(token.text) corrected_text.append(' '.join(sentence)) return ' '.join(corrected_text) # Function to force capitalization of the first letter of every sentence and ensure full stops def force_first_letter_capital(text): sentences = re.split(r'(?<=\w[.!?])\s+', text) capitalized_sentences = [] for sentence in sentences: if sentence: capitalized_sentence = sentence[0].capitalize() + sentence[1:] if not re.search(r'[.!?]$', capitalized_sentence): capitalized_sentence += '.' capitalized_sentences.append(capitalized_sentence) return " ".join(capitalized_sentences) # Function to correct tense errors in a sentence def correct_tense_errors(text): doc = nlp(text) corrected_text = [] for token in doc: if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text corrected_text.append(lemma) else: corrected_text.append(token.text) return ' '.join(corrected_text) # Function to check and correct article errors def correct_article_errors(text): doc = nlp(text) corrected_text = [] for token in doc: if token.text in ['a', 'an']: next_token = token.nbor(1) if token.text == "a" and next_token.text[0].lower() in "aeiou": corrected_text.append("an") elif token.text == "an" and next_token.text[0].lower() not in "aeiou": corrected_text.append("a") else: corrected_text.append(token.text) else: corrected_text.append(token.text) return ' '.join(corrected_text) # Function to ensure subject-verb agreement def ensure_subject_verb_agreement(text): doc = nlp(text) corrected_text = [] for token in doc: if token.dep_ == "nsubj" and token.head.pos_ == "VERB": if token.tag_ == "NN" and token.head.tag_ != "VBZ": corrected_text.append(token.head.lemma_ + "s") elif token.tag_ == "NNS" and token.head.tag_ == "VBZ": corrected_text.append(token.head.lemma_) corrected_text.append(token.text) return ' '.join(corrected_text) # Function to correct spelling errors # Function to correct spelling errors def correct_spelling(text): words = text.split() corrected_words = [] for word in words: corrected_word = spell.correction(word) # If correction returns None, keep the original word corrected_words.append(corrected_word if corrected_word is not None else word) return ' '.join(corrected_words) # Main processing function for paraphrasing and grammar correction def paraphrase_and_correct(text): cleaned_text = remove_redundant_words(text) cleaned_text = fix_punctuation_spacing(cleaned_text) cleaned_text = fix_possessives(cleaned_text) cleaned_text = capitalize_sentences_and_nouns(cleaned_text) cleaned_text = force_first_letter_capital(cleaned_text) cleaned_text = correct_tense_errors(cleaned_text) cleaned_text = correct_article_errors(cleaned_text) cleaned_text = ensure_subject_verb_agreement(cleaned_text) cleaned_text = correct_spelling(cleaned_text) plag_removed = plagiarism_removal(cleaned_text) return plag_removed # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# AI Text Processor") with gr.Tab("AI Detection"): t1 = gr.Textbox(lines=5, label='Input Text') output1 = gr.Label() button1 = gr.Button("🚀 Process!") button1.click(fn=predict_en, inputs=t1, outputs=output1) with gr.Tab("Paraphrasing and Grammar Correction"): t2 = gr.Textbox(lines=5, label='Input Text') button2 = gr.Button("🚀 Process!") output2 = gr.Textbox(lines=5, label='Processed Text') button2.click(fn=paraphrase_and_correct, inputs=t2, outputs=output2) demo.launch()