Spaces:
Running
Running
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from textblob import TextBlob | |
from pattern.en import conjugate, lemma, pluralize, singularize | |
from gector.gec_model import GecBERTModel # Import GECToR Model | |
from utils.helpers import read_lines, normalize # GECToR utilities | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# Function to predict the label and score for English text (AI Detection) | |
def predict_en(text): | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
# Ensure necessary NLTK data is downloaded for Humanifier | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed for Humanifier | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Function to get synonyms using NLTK WordNet (Humanifier) | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas] | |
return [] | |
# Function to capitalize the first letter of sentences and proper nouns (Humanifier) | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Function to correct tense errors using Pattern | |
def correct_tense_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "VERB": | |
# Use conjugate from Pattern to adjust the tense of the verb | |
verb_form = conjugate(lemma(token.text), tense='past') # Example: fix to past tense | |
corrected_text.append(verb_form) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct singular/plural errors using Pattern | |
def correct_singular_plural_errors(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN": | |
if token.tag_ == "NN": # Singular noun | |
corrected_text.append(singularize(token.text)) | |
elif token.tag_ == "NNS": # Plural noun | |
corrected_text.append(pluralize(token.text)) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
# Function to correct overall grammar using TextBlob | |
def correct_grammar_textblob(text): | |
blob = TextBlob(text) | |
corrected_text = str(blob.correct()) # TextBlob's built-in grammar correction | |
return corrected_text | |
# Initialize GECToR Model for Grammar Correction | |
def load_gector_model(): | |
model_path = ["gector/roberta_1_gector.th"] # Ensure model file is placed correctly | |
vocab_path = "output_vocabulary" | |
model = GecBERTModel(vocab_path=vocab_path, | |
model_paths=model_path, | |
max_len=50, | |
min_len=3, | |
iterations=5, | |
min_error_probability=0.0, | |
lowercase_tokens=0, | |
model_name="roberta", | |
special_tokens_fix=1, | |
log=False, | |
confidence=0, | |
del_confidence=0, | |
is_ensemble=False, | |
weigths=None) | |
return model | |
# Load the GECToR model | |
gector_model = load_gector_model() | |
# Function to correct grammar using GECToR | |
def correct_grammar_gector(text): | |
sentences = [text.split()] | |
corrected_sentences, _ = gector_model.handle_batch(sentences) | |
return " ".join(corrected_sentences[0]) | |
# Paraphrasing function using SpaCy and NLTK (Humanifier) | |
def paraphrase_with_spacy_nltk(text): | |
doc = nlp(text) | |
paraphrased_words = [] | |
for token in doc: | |
# Map SpaCy POS tags to WordNet POS tags | |
pos = None | |
if token.pos_ in {"NOUN"}: | |
pos = wordnet.NOUN | |
elif token.pos_ in {"VERB"}: | |
pos = wordnet.VERB | |
elif token.pos_ in {"ADJ"}: | |
pos = wordnet.ADJ | |
elif token.pos_ in {"ADV"}: | |
pos = wordnet.ADV | |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] | |
# Replace with a synonym only if it makes sense | |
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): | |
paraphrased_words.append(synonyms[0]) | |
else: | |
paraphrased_words.append(token.text) | |
return ' '.join(paraphrased_words) | |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier) | |
def paraphrase_and_correct(text): | |
# Step 1: Paraphrase the text | |
paraphrased_text = paraphrase_with_spacy_nltk(text) | |
# Step 2: Apply grammatical corrections using GECToR | |
corrected_text = correct_grammar_gector(paraphrased_text) | |
return corrected_text | |
# Gradio app setup with two tabs | |
with gr.Blocks() as demo: | |
with gr.Tab("AI Detection"): | |
t1 = gr.Textbox(lines=5, label='Text') | |
button1 = gr.Button("🤖 Predict!") | |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃') | |
score1 = gr.Textbox(lines=1, label='Prob') | |
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en') | |
with gr.Tab("Humanifier"): | |
text_input = gr.Textbox(lines=5, label="Input Text") | |
paraphrase_button = gr.Button("Paraphrase & Correct") | |
output_text = gr.Textbox(label="Paraphrased and Corrected Text") | |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text) | |
# Launch the app | |
demo.launch() | |