Spaces:
Running
Running
import os | |
from pathlib import Path | |
VOCAB_DIR = Path(__file__).resolve().parent.parent / "data" | |
PAD = "@@PADDING@@" | |
UNK = "@@UNKNOWN@@" | |
START_TOKEN = "$START" | |
SEQ_DELIMETERS = {"tokens": " ", | |
"labels": "SEPL|||SEPR", | |
"operations": "SEPL__SEPR"} | |
REPLACEMENTS = { | |
"''": '"', | |
'--': '—', | |
'`': "'", | |
"'ve": "' ve", | |
} | |
def get_verb_form_dicts(): | |
path_to_dict = os.path.join(VOCAB_DIR, "verb-form-vocab.txt") | |
encode, decode = {}, {} | |
with open(path_to_dict, encoding="utf-8") as f: | |
for line in f: | |
words, tags = line.split(":") | |
word1, word2 = words.split("_") | |
tag1, tag2 = tags.split("_") | |
decode_key = f"{word1}_{tag1}_{tag2.strip()}" | |
if decode_key not in decode: | |
encode[words] = tags | |
decode[decode_key] = word2 | |
return encode, decode | |
ENCODE_VERB_DICT, DECODE_VERB_DICT = get_verb_form_dicts() | |
def get_target_sent_by_edits(source_tokens, edits): | |
target_tokens = source_tokens[:] | |
shift_idx = 0 | |
for edit in edits: | |
start, end, label, _ = edit | |
target_pos = start + shift_idx | |
source_token = target_tokens[target_pos] \ | |
if len(target_tokens) > target_pos >= 0 else '' | |
if label == "": | |
del target_tokens[target_pos] | |
shift_idx -= 1 | |
elif start == end: | |
word = label.replace("$APPEND_", "") | |
target_tokens[target_pos: target_pos] = [word] | |
shift_idx += 1 | |
elif label.startswith("$TRANSFORM_"): | |
word = apply_reverse_transformation(source_token, label) | |
if word is None: | |
word = source_token | |
target_tokens[target_pos] = word | |
elif start == end - 1: | |
word = label.replace("$REPLACE_", "") | |
target_tokens[target_pos] = word | |
elif label.startswith("$MERGE_"): | |
target_tokens[target_pos + 1: target_pos + 1] = [label] | |
shift_idx += 1 | |
return replace_merge_transforms(target_tokens) | |
def replace_merge_transforms(tokens): | |
if all(not x.startswith("$MERGE_") for x in tokens): | |
return tokens | |
target_line = " ".join(tokens) | |
target_line = target_line.replace(" $MERGE_HYPHEN ", "-") | |
target_line = target_line.replace(" $MERGE_SPACE ", "") | |
return target_line.split() | |
def convert_using_case(token, smart_action): | |
if not smart_action.startswith("$TRANSFORM_CASE_"): | |
return token | |
if smart_action.endswith("LOWER"): | |
return token.lower() | |
elif smart_action.endswith("UPPER"): | |
return token.upper() | |
elif smart_action.endswith("CAPITAL"): | |
return token.capitalize() | |
elif smart_action.endswith("CAPITAL_1"): | |
return token[0] + token[1:].capitalize() | |
elif smart_action.endswith("UPPER_-1"): | |
return token[:-1].upper() + token[-1] | |
else: | |
return token | |
def convert_using_verb(token, smart_action): | |
key_word = "$TRANSFORM_VERB_" | |
if not smart_action.startswith(key_word): | |
raise Exception(f"Unknown action type {smart_action}") | |
encoding_part = f"{token}_{smart_action[len(key_word):]}" | |
decoded_target_word = decode_verb_form(encoding_part) | |
return decoded_target_word | |
def convert_using_split(token, smart_action): | |
key_word = "$TRANSFORM_SPLIT" | |
if not smart_action.startswith(key_word): | |
raise Exception(f"Unknown action type {smart_action}") | |
target_words = token.split("-") | |
return " ".join(target_words) | |
def convert_using_plural(token, smart_action): | |
if smart_action.endswith("PLURAL"): | |
return token + "s" | |
elif smart_action.endswith("SINGULAR"): | |
return token[:-1] | |
else: | |
raise Exception(f"Unknown action type {smart_action}") | |
def apply_reverse_transformation(source_token, transform): | |
if transform.startswith("$TRANSFORM"): | |
# deal with equal | |
if transform == "$KEEP": | |
return source_token | |
# deal with case | |
if transform.startswith("$TRANSFORM_CASE"): | |
return convert_using_case(source_token, transform) | |
# deal with verb | |
if transform.startswith("$TRANSFORM_VERB"): | |
return convert_using_verb(source_token, transform) | |
# deal with split | |
if transform.startswith("$TRANSFORM_SPLIT"): | |
return convert_using_split(source_token, transform) | |
# deal with single/plural | |
if transform.startswith("$TRANSFORM_AGREEMENT"): | |
return convert_using_plural(source_token, transform) | |
# raise exception if not find correct type | |
raise Exception(f"Unknown action type {transform}") | |
else: | |
return source_token | |
def read_parallel_lines(fn1, fn2): | |
lines1 = read_lines(fn1, skip_strip=True) | |
lines2 = read_lines(fn2, skip_strip=True) | |
assert len(lines1) == len(lines2) | |
out_lines1, out_lines2 = [], [] | |
for line1, line2 in zip(lines1, lines2): | |
if not line1.strip() or not line2.strip(): | |
continue | |
else: | |
out_lines1.append(line1) | |
out_lines2.append(line2) | |
return out_lines1, out_lines2 | |
def read_lines(fn, skip_strip=False): | |
if not os.path.exists(fn): | |
return [] | |
with open(fn, 'r', encoding='utf-8') as f: | |
lines = f.readlines() | |
return [s.strip() for s in lines if s.strip() or skip_strip] | |
def write_lines(fn, lines, mode='w'): | |
if mode == 'w' and os.path.exists(fn): | |
os.remove(fn) | |
with open(fn, encoding='utf-8', mode=mode) as f: | |
f.writelines(['%s\n' % s for s in lines]) | |
def decode_verb_form(original): | |
return DECODE_VERB_DICT.get(original) | |
def encode_verb_form(original_word, corrected_word): | |
decoding_request = original_word + "_" + corrected_word | |
decoding_response = ENCODE_VERB_DICT.get(decoding_request, "").strip() | |
if original_word and decoding_response: | |
answer = decoding_response | |
else: | |
answer = None | |
return answer | |
def get_weights_name(transformer_name, lowercase): | |
if transformer_name == 'bert' and lowercase: | |
return 'bert-base-uncased' | |
if transformer_name == 'bert' and not lowercase: | |
return 'bert-base-cased' | |
if transformer_name == 'bert-large' and not lowercase: | |
return 'bert-large-cased' | |
if transformer_name == 'distilbert': | |
if not lowercase: | |
print('Warning! This model was trained only on uncased sentences.') | |
return 'distilbert-base-uncased' | |
if transformer_name == 'albert': | |
if not lowercase: | |
print('Warning! This model was trained only on uncased sentences.') | |
return 'albert-base-v1' | |
if lowercase: | |
print('Warning! This model was trained only on cased sentences.') | |
if transformer_name == 'roberta': | |
return 'roberta-base' | |
if transformer_name == 'roberta-large': | |
return 'roberta-large' | |
if transformer_name == 'gpt2': | |
return 'gpt2' | |
if transformer_name == 'transformerxl': | |
return 'transfo-xl-wt103' | |
if transformer_name == 'xlnet': | |
return 'xlnet-base-cased' | |
if transformer_name == 'xlnet-large': | |
return 'xlnet-large-cased' | |
def remove_double_tokens(sent): | |
tokens = sent.split(' ') | |
deleted_idx = [] | |
for i in range(len(tokens) -1): | |
if tokens[i] == tokens[i + 1]: | |
deleted_idx.append(i + 1) | |
if deleted_idx: | |
tokens = [tokens[i] for i in range(len(tokens)) if i not in deleted_idx] | |
return ' '.join(tokens) | |
def normalize(sent): | |
sent = remove_double_tokens(sent) | |
for fr, to in REPLACEMENTS.items(): | |
sent = sent.replace(fr, to) | |
return sent.lower() | |