Spaces:
Running
Running
import os | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import subprocess | |
import nltk | |
from nltk.corpus import wordnet | |
from gensim import downloader as api | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Load a smaller Word2Vec model from Gensim's pre-trained models | |
word_vectors = api.load("glove-wiki-gigaword-50") | |
# Load the English AI detection pipeline using the Hello-SimpleAI model | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
# AI detection function using the Hello-SimpleAI/chatgpt-detector-roberta model | |
def detect_ai_generated(text): | |
res = pipeline_en(text)[0] | |
label = res['label'] # "LABEL_0" or "LABEL_1" | |
score = res['score'] * 100 # Convert probability to percentage | |
# Map the model's label to human-readable label | |
human_readable_label = "AI" if label == "LABEL_1" else "Human" | |
# Return formatted string with label and percentage score | |
return f"The content is {score:.2f}% {human_readable_label} Written", score | |
# Function to get synonyms using NLTK WordNet | |
def get_synonyms_nltk(word, pos): | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas] | |
return [] | |
# Function to capitalize the first letter of sentences and proper nouns | |
def capitalize_sentences_and_nouns(text): | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
# Paraphrasing function using SpaCy and NLTK | |
def paraphrase_with_spacy_nltk(text): | |
doc = nlp(text) | |
paraphrased_words = [] | |
for token in doc: | |
# Map SpaCy POS tags to WordNet POS tags | |
pos = None | |
if token.pos_ in {"NOUN"}: | |
pos = wordnet.NOUN | |
elif token.pos_ in {"VERB"}: | |
pos = wordnet.VERB | |
elif token.pos_ in {"ADJ"}: | |
pos = wordnet.ADJ | |
elif token.pos_ in {"ADV"}: | |
pos = wordnet.ADV | |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else [] | |
# Replace with a synonym only if it makes sense | |
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower(): | |
paraphrased_words.append(synonyms[0]) | |
else: | |
paraphrased_words.append(token.text) | |
# Join the words back into a sentence | |
paraphrased_sentence = ' '.join(paraphrased_words) | |
# Capitalize sentences and proper nouns | |
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence) | |
return corrected_text | |
# Combined function: Paraphrase -> Capitalization | |
def paraphrase_and_correct(text): | |
# Step 1: Paraphrase the text | |
paraphrased_text = paraphrase_with_spacy_nltk(text) | |
# Step 2: Capitalize sentences and proper nouns | |
final_text = capitalize_sentences_and_nouns(paraphrased_text) | |
return final_text | |
# Gradio interface definition | |
with gr.Blocks() as interface: | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox(lines=5, label="Input Text") | |
detect_button = gr.Button("AI Detection") | |
paraphrase_button = gr.Button("Paraphrase & Correct") | |
with gr.Column(): | |
output_label = gr.Textbox(label="Predicted Label 🎃") | |
output_prob = gr.Textbox(label="Probability (%)") | |
detect_button.click(detect_ai_generated, inputs=text_input, outputs=[output_label, output_prob]) | |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_label) | |
# Launch the Gradio app | |
interface.launch(debug=False) | |