sashtech's picture
Update app.py
aec8023 verified
raw
history blame
4.31 kB
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from gensim import downloader as api
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Load a smaller Word2Vec model from Gensim's pre-trained models
word_vectors = api.load("glove-wiki-gigaword-50")
# Load the English AI detection pipeline using the Hello-SimpleAI model
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# AI detection function using the Hello-SimpleAI/chatgpt-detector-roberta model
def detect_ai_generated(text):
res = pipeline_en(text)[0]
label = res['label'] # "LABEL_0" or "LABEL_1"
score = res['score'] * 100 # Convert probability to percentage
# Map the model's label to human-readable label
human_readable_label = "AI" if label == "LABEL_1" else "Human"
# Return formatted string with label and percentage score
return f"The content is {score:.2f}% {human_readable_label} Written", score
# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Paraphrasing function using SpaCy and NLTK
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
# Map SpaCy POS tags to WordNet POS tags
pos = None
if token.pos_ in {"NOUN"}:
pos = wordnet.NOUN
elif token.pos_ in {"VERB"}:
pos = wordnet.VERB
elif token.pos_ in {"ADJ"}:
pos = wordnet.ADJ
elif token.pos_ in {"ADV"}:
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it makes sense
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
paraphrased_words.append(synonyms[0])
else:
paraphrased_words.append(token.text)
# Join the words back into a sentence
paraphrased_sentence = ' '.join(paraphrased_words)
# Capitalize sentences and proper nouns
corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
return corrected_text
# Combined function: Paraphrase -> Capitalization
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Step 2: Capitalize sentences and proper nouns
final_text = capitalize_sentences_and_nouns(paraphrased_text)
return final_text
# Gradio interface definition
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=5, label="Input Text")
detect_button = gr.Button("AI Detection")
paraphrase_button = gr.Button("Paraphrase & Correct")
with gr.Column():
output_label = gr.Textbox(label="Predicted Label 🎃")
output_prob = gr.Textbox(label="Probability (%)")
detect_button.click(detect_ai_generated, inputs=text_input, outputs=[output_label, output_prob])
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_label)
# Launch the Gradio app
interface.launch(debug=False)