sashtech's picture
Update app.py
f79e1dd verified
raw
history blame
5.2 kB
import os
import subprocess
import gradio as gr
from transformers import pipeline
import spacy
import nltk
from nltk.corpus import wordnet
# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
def predict_en(text):
"""Function to predict the label and score for English text (AI Detection)"""
res = pipeline_en(text)[0]
return res['label'], res['score']
def get_synonyms_nltk(word, pos):
"""Function to get synonyms using NLTK WordNet"""
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name() for lemma in lemmas]
return []
def rephrase_text(text):
"""Function to rephrase text by replacing words with synonyms"""
doc = nlp(text)
rephrased_text = []
for token in doc:
if token.pos_ in ["NOUN", "VERB", "ADJ"]:
synonyms = get_synonyms_nltk(token.text, pos=token.pos_.lower())
if synonyms:
rephrased_text.append(synonyms[0]) # Replace with first synonym found
else:
rephrased_text.append(token.text)
else:
rephrased_text.append(token.text)
return ' '.join(rephrased_text)
def capitalize_sentences_and_nouns(text):
"""Function to capitalize the first letter of sentences and proper nouns"""
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
def correct_tense_errors(text):
"""Function to correct tense errors in a sentence"""
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}:
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
corrected_text.append(lemma)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def correct_singular_plural_errors(text):
"""Function to correct singular/plural errors"""
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN": # Singular noun
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children):
corrected_text.append(token.lemma_ + 's')
else:
corrected_text.append(token.text)
elif token.tag_ == "NNS": # Plural noun
if any(child.text.lower() in ['a', 'one'] for child in token.head.children):
corrected_text.append(token.lemma_)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def correct_article_errors(text):
"""Function to check and correct article errors"""
doc = nlp(text)
corrected_text = []
for token in doc:
if token.text in ['a', 'an']:
next_token = token.nbor(1)
if token.text == "a" and next_token.text[0].lower() in "aeiou":
corrected_text.append("an")
elif token.text == "an" and next_token.text[0].lower() not in "aeiou":
corrected_text.append("a")
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
def paraphrase_and_correct(text):
"""Function to rephrase and correct grammar"""
rephrased_text = rephrase_text(text)
rephrased_text = capitalize_sentences_and_nouns(rephrased_text) # Capitalize first to ensure proper noun capitalization
rephrased_text = correct_article_errors(rephrased_text)
rephrased_text = correct_tense_errors(rephrased_text)
rephrased_text = correct_singular_plural_errors(rephrased_text)
return rephrased_text
# Define Gradio interface
with gr.Blocks() as demo:
with gr.Row():
t1 = gr.Textbox(label="Input Text", lines=5)
button1 = gr.Button("Process")
with gr.Row():
output_text = gr.Textbox(label="Processed Text", lines=5)
label1 = gr.Label(label="AI Detection Label")
score1 = gr.Label(label="AI Detection Score")
button1.click(
fn=lambda text: (paraphrase_and_correct(text), *predict_en(text)),
inputs=[t1],
outputs=[output_text, label1, score1]
)
demo.launch()