Spaces:
Running
Running
import os | |
import subprocess | |
import gradio as gr | |
from transformers import pipeline | |
import spacy | |
import nltk | |
from nltk.corpus import wordnet | |
# Ensure necessary NLTK data is downloaded | |
nltk.download('wordnet') | |
nltk.download('omw-1.4') | |
# Ensure the SpaCy model is installed | |
try: | |
nlp = spacy.load("en_core_web_sm") | |
except OSError: | |
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"]) | |
nlp = spacy.load("en_core_web_sm") | |
# Initialize the English text classification pipeline for AI detection | |
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta") | |
def predict_en(text): | |
"""Function to predict the label and score for English text (AI Detection)""" | |
res = pipeline_en(text)[0] | |
return res['label'], res['score'] | |
def get_synonyms_nltk(word, pos): | |
"""Function to get synonyms using NLTK WordNet""" | |
synsets = wordnet.synsets(word, pos=pos) | |
if synsets: | |
lemmas = synsets[0].lemmas() | |
return [lemma.name() for lemma in lemmas] | |
return [] | |
def rephrase_text(text): | |
"""Function to rephrase text by replacing words with synonyms""" | |
doc = nlp(text) | |
rephrased_text = [] | |
for token in doc: | |
if token.pos_ in ["NOUN", "VERB", "ADJ"]: | |
synonyms = get_synonyms_nltk(token.text, pos=token.pos_.lower()) | |
if synonyms: | |
rephrased_text.append(synonyms[0]) # Replace with first synonym found | |
else: | |
rephrased_text.append(token.text) | |
else: | |
rephrased_text.append(token.text) | |
return ' '.join(rephrased_text) | |
def capitalize_sentences_and_nouns(text): | |
"""Function to capitalize the first letter of sentences and proper nouns""" | |
doc = nlp(text) | |
corrected_text = [] | |
for sent in doc.sents: | |
sentence = [] | |
for token in sent: | |
if token.i == sent.start: # First word of the sentence | |
sentence.append(token.text.capitalize()) | |
elif token.pos_ == "PROPN": # Proper noun | |
sentence.append(token.text.capitalize()) | |
else: | |
sentence.append(token.text) | |
corrected_text.append(' '.join(sentence)) | |
return ' '.join(corrected_text) | |
def correct_tense_errors(text): | |
"""Function to correct tense errors in a sentence""" | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "VERB" and token.dep_ in {"aux", "auxpass"}: | |
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text | |
corrected_text.append(lemma) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
def correct_singular_plural_errors(text): | |
"""Function to correct singular/plural errors""" | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.pos_ == "NOUN": | |
if token.tag_ == "NN": # Singular noun | |
if any(child.text.lower() in ['many', 'several', 'few'] for child in token.head.children): | |
corrected_text.append(token.lemma_ + 's') | |
else: | |
corrected_text.append(token.text) | |
elif token.tag_ == "NNS": # Plural noun | |
if any(child.text.lower() in ['a', 'one'] for child in token.head.children): | |
corrected_text.append(token.lemma_) | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
def correct_article_errors(text): | |
"""Function to check and correct article errors""" | |
doc = nlp(text) | |
corrected_text = [] | |
for token in doc: | |
if token.text in ['a', 'an']: | |
next_token = token.nbor(1) | |
if token.text == "a" and next_token.text[0].lower() in "aeiou": | |
corrected_text.append("an") | |
elif token.text == "an" and next_token.text[0].lower() not in "aeiou": | |
corrected_text.append("a") | |
else: | |
corrected_text.append(token.text) | |
else: | |
corrected_text.append(token.text) | |
return ' '.join(corrected_text) | |
def paraphrase_and_correct(text): | |
"""Function to rephrase and correct grammar""" | |
rephrased_text = rephrase_text(text) | |
rephrased_text = capitalize_sentences_and_nouns(rephrased_text) # Capitalize first to ensure proper noun capitalization | |
rephrased_text = correct_article_errors(rephrased_text) | |
rephrased_text = correct_tense_errors(rephrased_text) | |
rephrased_text = correct_singular_plural_errors(rephrased_text) | |
return rephrased_text | |
# Define Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
t1 = gr.Textbox(label="Input Text", lines=5) | |
button1 = gr.Button("Process") | |
with gr.Row(): | |
output_text = gr.Textbox(label="Processed Text", lines=5) | |
label1 = gr.Label(label="AI Detection Label") | |
score1 = gr.Label(label="AI Detection Score") | |
button1.click( | |
fn=lambda text: (paraphrase_and_correct(text), *predict_en(text)), | |
inputs=[t1], | |
outputs=[output_text, label1, score1] | |
) | |
demo.launch() | |