Spaces:
Running
Running
# Import dependencies | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, T5Tokenizer, T5ForConditionalGeneration | |
import torch | |
import nltk | |
from nltk.corpus import wordnet | |
import subprocess | |
# Download NLTK data (if not already downloaded) | |
nltk.download('punkt') | |
nltk.download('stopwords') | |
nltk.download('wordnet') # Download WordNet | |
# Check for GPU and set the device accordingly | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load AI Detector model and tokenizer from Hugging Face (DistilBERT) | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") | |
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english").to(device) | |
# Load Parrot Paraphraser model and tokenizer for humanizing text | |
paraphrase_tokenizer = T5Tokenizer.from_pretrained("prithivida/parrot_paraphraser_on_T5") | |
paraphrase_model = T5ForConditionalGeneration.from_pretrained("prithivida/parrot_paraphraser_on_T5").to(device) | |
# AI detection function using DistilBERT | |
def detect_ai_generated(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.softmax(outputs.logits, dim=1) | |
ai_probability = probabilities[0][1].item() # Probability of being AI-generated | |
return f"AI-Generated Content Probability: {ai_probability:.2f}%" | |
# Humanize the AI-detected text using the Parrot Paraphraser model | |
def humanize_text(AI_text): | |
inputs = paraphrase_tokenizer(AI_text, return_tensors="pt", max_length=512, truncation=True).to(device) | |
with torch.no_grad(): # Avoid gradient calculations for faster inference | |
paraphrased_ids = paraphrase_model.generate( | |
inputs['input_ids'], | |
max_length=inputs['input_ids'].shape[-1] + 20, # Slightly more than the original input length | |
num_beams=4, | |
early_stopping=True, | |
length_penalty=1.0, | |
no_repeat_ngram_size=3, | |
) | |
paraphrased_text = paraphrase_tokenizer.decode(paraphrased_ids[0], skip_special_tokens=True) | |
return f"Humanized Text:\n{paraphrased_text}" | |
# Gradio interface definition | |
ai_detection_interface = gr.Interface( | |
fn=detect_ai_generated, | |
inputs="textbox", | |
outputs="text", | |
title="AI Text Detection", | |
description="Enter text to determine the probability of it being AI-generated." | |
) | |
humanization_interface = gr.Interface( | |
fn=humanize_text, | |
inputs="textbox", | |
outputs="text", | |
title="Text Humanizer", | |
description="Enter text to get a human-written version, paraphrased for natural output." | |
) | |
# Combine both interfaces into a single Gradio app with tabs | |
interface = gr.TabbedInterface( | |
[ai_detection_interface, humanization_interface], | |
["AI Detection", "Humanization"] | |
) | |
# Launch the Gradio app | |
interface.launch(debug=False) | |